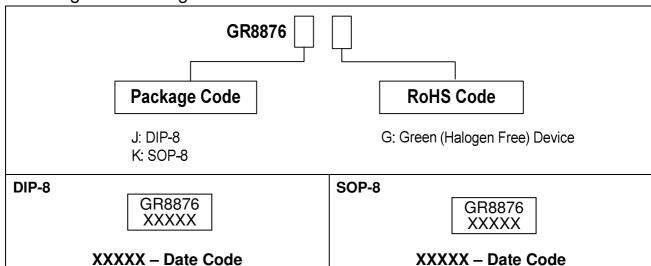


## **Green-Mode PWM Controller with Integrated Protections**

#### **Features**

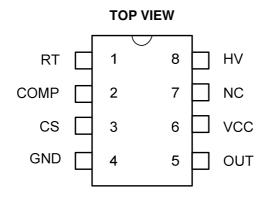
- High-voltage (500V) startup circuit
- Current mode PWM
- Very low startup current (<20uA)</li>
- Under-voltage lockout (UVLO)
- Non-audible-noise green-mode control
- Programmable switching frequency
- Cycle-by-cycle peak current limiting
- Internal leading-edge blanking
- Internal slope compensation
- Internal 4ms soft start (Fs = 65KHz)
- VCC over-voltage clamp
- Gate output voltage clamp
- Soft driving for reducing EMI
- Over-voltage protection (OVP) on Vcc pin
- Over-load protection (OLP)
- Over-current protection (OCP) on CS pin
- 500mA driving capability


#### **Applications**

- Open-frame SMPS
- Switching AC/DC adapter and battery charger

#### Description

The GR8876 is a highly-integrated, low startup current, current mode PWM controller with green-mode function and high-voltage start up circuit. A high-voltage current source supplies the start up current and the traditional start up resistance can be saved in order to limit the power cost. The controller also includes the leading-edge blanking of the current sensing, internal slope compensation and cycle-by-cycle peak current It is also integrated soft driving for limiting. reducing EMI, gate output voltage clamp function for protecting power MOSFET. GR8876 provides several protections such as OLP, OVP, and OCP for fault conditions. The GR8876 improves the performance and reduces the cost of power supplies. It is available in both 8-pin SOP and 8-pin DIP package.


## Ordering and Marking Information



Grenergy OPTO Inc. reserves the right to make changes to improve reliability or manufacture ability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.



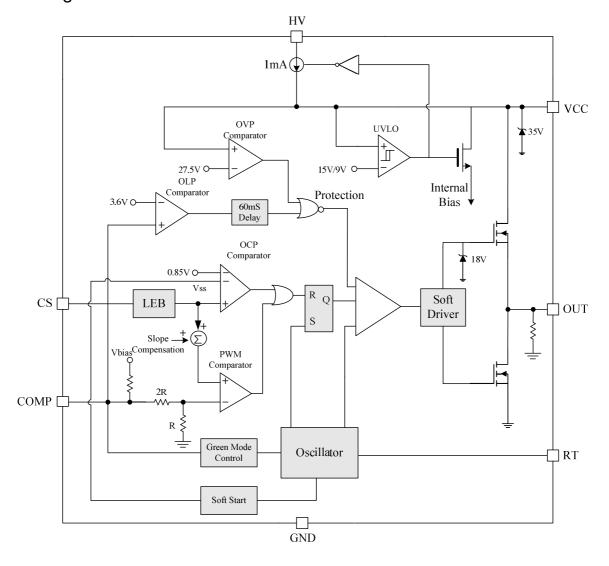
# Pin Configuration



## Pin Description

| Pin | Symbol | Description                                                                            |
|-----|--------|----------------------------------------------------------------------------------------|
| 1   | RT     | Connecting a resistor to ground, this resistor determine the switching frequency       |
| 2   | COMP   | Voltage feedback pin, by connecting a photo-coupler to control the duty cycle          |
| 3   | CS     | Current sense pin, connect to sense the MOSFET current                                 |
| 4   | GND    | Ground                                                                                 |
| 5   | OUT    | The output for driving the external MOSFET                                             |
| 6   | VCC    | Power supply pin                                                                       |
| 7   | NC     | Unconnected pin                                                                        |
|     |        | This pin is connected to positive terminal of bulk capacitor. It provides the startup  |
| 8   | HV     | current. When UVLO (on) is tripped, this HV loop will be off thus limit the power loss |
|     |        | on the startup circuit.                                                                |

## Absolute Maximum Ratings

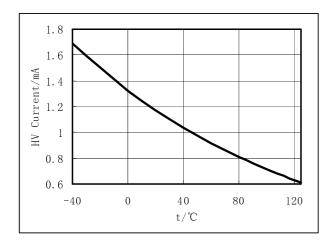

| Supply voltage VCC                                                 | 35V          |
|--------------------------------------------------------------------|--------------|
| High-voltage pin, HV 0.3                                           | 3 ~ 500V     |
| COMP, RT, CS                                                       | 0.3 ~ 7V     |
| Junction temperature                                               | 150°C        |
| Operating ambient temperature 20°C                                 | C ~ 85°C     |
| Storage temperature range 65 $^{\circ}\mathrm{C}$                  | ~ 150℃       |
| SOP-8 package thermal resistance                                   | 160℃/W       |
| DIP-8 package thermal resistance1                                  | 100℃/W       |
| Power dissipation (SOP-8, at ambient temperature = $85^{\circ}$ C) | 400 mW       |
| Power dissipation (DIP-8, at ambient temperature = $85^{\circ}$ C) | 650mW        |
| Lead temperature (SOP-8 & DIP-8, soldering, 10sec)                 | <b>230</b> ℃ |
| Lead temperature (All Pb free packages, soldering, 10sec)          | <b>260</b> ℃ |
| ESD voltage protection, human body model (except HV pin)           | 3KV          |
| ESD voltage protection, machine model                              | 250V         |



# **Recommended Operating Conditions**

| Item                | Min. | Max. | Unit |
|---------------------|------|------|------|
| Supply voltage VCC  | 11   | 25   | V    |
| Switching frequency | 50   | 130  | KHz  |

## **Block Diagram**






| Parameter                                                        | Pin | Min. | Typ. | Max. | Unit |
|------------------------------------------------------------------|-----|------|------|------|------|
| HIGH-VOLTAGE SUPPLY (HV Pin)                                     |     |      |      |      |      |
| High-voltage current source (Vcc = 0V)                           | 8   | 0.5  | 1.0  | 1.55 | mA   |
| Off-state leakage current                                        | 8   | 0    |      | 25   | uA   |
| SUPPLY VOLTAGE                                                   |     |      |      |      |      |
| Startup current                                                  | 6   |      |      | 20   | uA   |
| Operating current (with 1nF load on OUT pin), Vcomp = 0V         | 6   | 1    | 2.3  | 3.3  | mA   |
| Operating current (with 1nF load on OUT pin), Vcomp = 2.5V       | 6   | 1.5  | 2.5  | 4.0  | mA   |
| Operating current (with 1nF load on OUT pin), protection tripped | 6   | 0.1  | 0.5  | 1    | mA   |
| (OLP, OVP)                                                       | O   | 0.1  | 0.5  | I    | IIIA |
| UVLO (on)                                                        | 6   | 13.5 | 14.5 | 15.8 | ٧    |
| UVLO (off)                                                       | 6   | 8.0  | 9.0  | 10.0 | ٧    |
| OVP level on VCC pin                                             | 6   | 26.5 | 27.5 | 30   | ٧    |
| Vcc Zener clamp                                                  | 6   |      | 35   |      | ٧    |
| VOLTAGE FEEDBACK                                                 |     |      |      |      |      |
| Short circuit current, Vcomp = 0V                                | 2   | 1    | 1.5  | 2    | mA   |
| Open loop voltage, COMP pin open                                 | 2   | 5    | 5.6  | 6    | ٧    |
| Green mode threshold voltage                                     | 2   |      | 1.2  |      | V    |
| CURRENT SENSING                                                  |     |      |      |      |      |
| Maximum input voltage, Vcs (off)                                 | 3   | 0.80 | 0.85 | 0.90 | ٧    |
| Leading-edge blanking time                                       | 3   | 250  | 350  | 550  | nS   |
| Input impedance                                                  | 3   | 1    |      |      | ΜΩ   |
| Delay to output                                                  | 3   |      | 100  |      | nS   |
| OSCILLATOR                                                       |     |      |      |      |      |
| Frequency (RT = 100K $\Omega$ )                                  | 3   | 60   | 65   | 70   | KHz  |
| Green mode frequency (RT = $100$ K $\Omega$ )                    | 3   | 18   | 22   | 28   | KHz  |
| Temp. stability (-40 °C ~ 110 °C)                                | 3   |      |      | 3    | %    |
| Voltage stability (Vcc = 11V ~ 25V)                              | 3   |      |      | 3    | %    |
| GATE DRIVER OUTPUT                                               | •   | •    |      |      |      |
| Output low level, VCC = 15V, lo = 20mA                           | 1   |      |      | 1    | V    |
| Output high level, VCC = 15V, lo = 20mA                          | 1   | 8    |      |      | V    |
| Rising time, load capacitance = 1000pF                           | 1   |      | 150  |      | nS   |
| Falling time, load capacitance = 1000pF                          | 1   |      | 50   |      | nS   |
| OLP                                                              | -   | -    | -    | -    | -    |
| OLP trip level, Vcomp (OLP)                                      | -   | 3.3  | 3.6  | 4    | V    |
| OLP delay time (note), Fs = 65KHz                                | -   |      | 60   |      | mS   |



# Typical Performance Characteristics





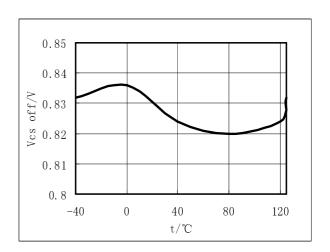



Fig.2

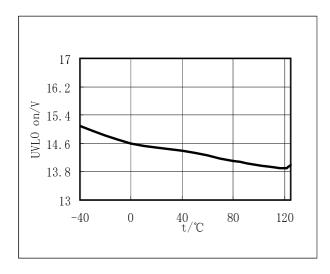



Fig.3

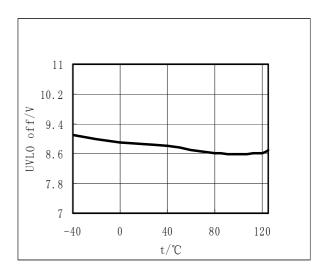



Fig.4

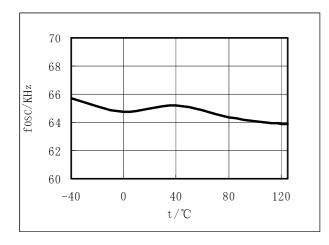



Fig.5

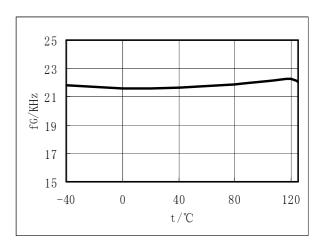
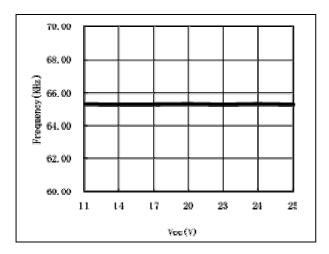




Fig.6



# Typical Performance Characteristics (Cont.)





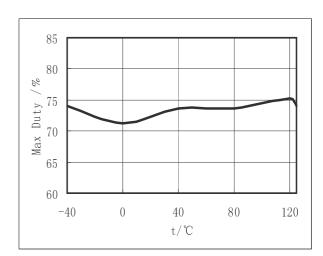



Fig.8

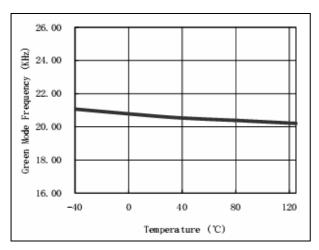



Fig.9

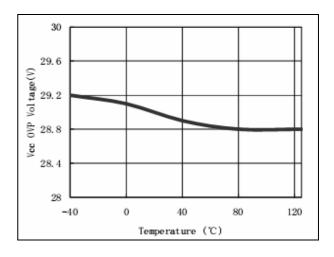



Fig.10

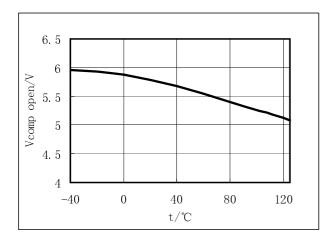



Fig.11

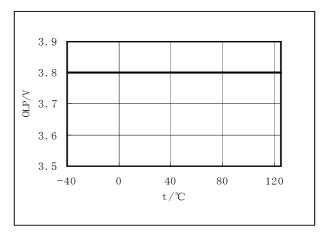



Fig. 12



### **Application Information**

#### Overview

The GR8876 integrates several functions that are needed in the market. It includes green-mode controller and high-voltage start-up circuit which can save the power loss after startup.

# High-voltage Startup Circuit and Under-voltage Lockout (UVLO)

GR8876 implements a high-voltage startup circuit, during the startup; high-voltage current sources are turned on and provide the start-up current as well as charge the Vcc capacitor. When the Vcc voltage is higher than the UVLO (on) threshold, the high-voltage current source will be turned off. Its leakage current is very low (8uA), which only consumes little power. By using such configuration, the traditional startup resistor is not needed and turn-on delay time will be almost the same no matter what the line voltage conditions are (Refer to Fig. 13).

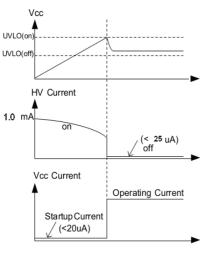



Fig. 13

A hysteresis UVLO comparator is implemented in GR8876, and then the turn-on and turn-off threshold levels are fixed at 14.5V and 9V respectively. This hysteresis shown in Fig.13 ensures that the start-up capacitor will be adequate to supply the chip during start-up.

#### Oscillator

The maximum duty-cycle of internal oscillator is limited to about 75% to avoid the transformer saturation. The frequency of the oscillator is decided by an external resistor connected from RT pin to ground.

fosc = 6500(KHz)/R(Kohm).

Where R is the resistor connected at RT pin. A 100Kohm resistor results in 65KHz switching frequency. The recommended range of oscillation frequency is 50 KHz ~ 130 KHz.

#### **Green-mode Operation**

When the load decreases to an extent, the frequency of the controller will decrease so as to reduce the system power consumption. The minimum frequency is about 22 KHz which is outside the audio range.

#### Leading-edge Blanking (LEB)

Each time the power MOSFET is switched on, a turn-on spike will inevitably occur at the sensor resistor. To avoid fault trigger, a 250ns leading-edge blanking time is built in. Conventional RC filtering can therefore be omitted. During this blanking period, the current-limit comparator is disabled and cannot switch off the gate driver.

#### **Internal Slope Compensation**

A built-in slope compensation circuit is constructed in GR8876. When the switch is on, a ramp voltage is added to the sensed voltage across the CS pin, which helps to stabilize the system and prevent sub-harmonic oscillations.

#### Gate Clamp/Soft Driving

Driver is clamped by an internal 18V Zener diode. Those damages usually come from undesired over-voltage gate signals. Under the conditions listed below, the gate output will turn off immediately to protect the power circuit.



The GR8876 also has soft driving function to minimize EMI.

#### **Soft Start**

During initial power on, the GR8876 provides soft start function. It effectively suppresses the start up peak current to reduce the power MOSFET drain voltage especially at high line.

#### Over-load Protection (OLP)

The controller has an over load protection function. An internal circuit detects the Comp pin level, when the level is larger than a threshold and the condition lasts more than 60ms, then the gate output will keep low level. The VCC will decrease to UVLO off level and the controller will be reset again. Fig.14 shows the waveform of the OLP operation.

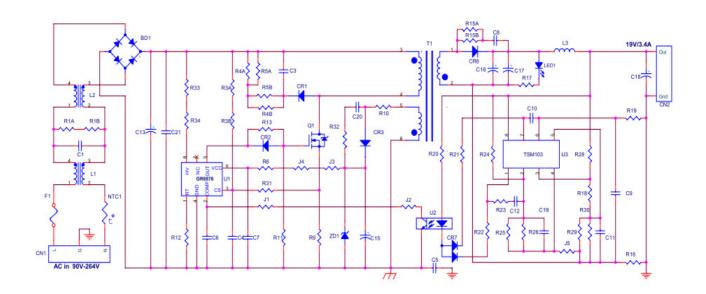



Fig.14

#### Over-voltage Protection (OVP) on VCC

To prevent power MOSFET from being damaged, the GR8876 is implemented an OVP function on VCC. When the VCC voltage is higher than the OVP threshold voltage, the output gate driver circuit will be shut down immediately to stop the switching of power MOSFET. The VCC OVP function is an auto-recovery type. If the OVP condition happens, the OUT pin will be disabled and will recover at the

next UVLO (on). The VCC is working in hiccup mode.


#### **Fault Protections**

There are several critical protections integrated in the GR8876 to prevent the power supply or adapter from being damaged. Those damages usually come from open or short condition on the pins of GR8876. Under the conditions listed below, the gate output will turn off immediately to protect the power circuit:

- . Gate pin short to ground
- . CS pin floating
- . RT pin floating
- . RT pin short to ground



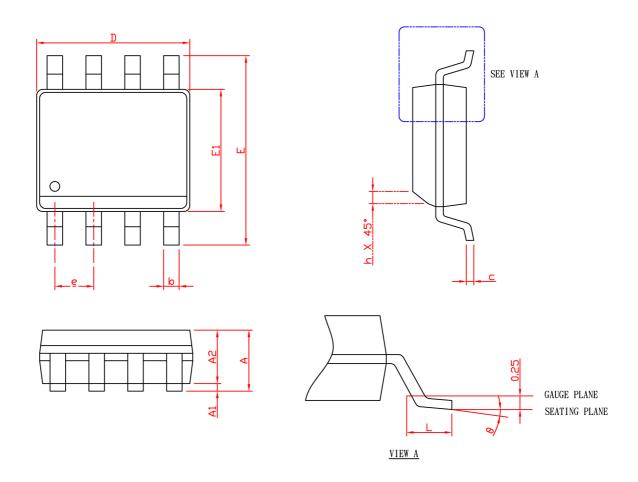
# Typical Application Circuit





## Bom List

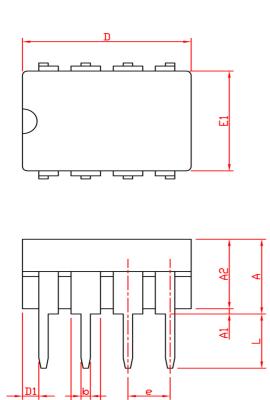
| No. | Part             | Description                           | Quan. |
|-----|------------------|---------------------------------------|-------|
| 1   | BD1              | Bridge, KBL406, DIP                   | 1     |
| 2   | C1               | X-cap, 0.47uF, 275V, DIP              | 1     |
| 3   | C2, C14, C20,C21 | N.A.                                  |       |
| 4   | C3               | Cap,102,1KV, DIP                      | 1     |
| 5   | C4               | Cap,101,50V, SMD 0805                 | 1     |
| 6   | C5               | Y-CAP, CD222, 275V                    | 1     |
| 7   | C6, C11, C12,C19 | Cap,103,50V, SMD 0805                 | 4     |
| 8   | C7               | Cap,104,50V, SMD 0805                 | 1     |
| 9   | C8               | Cap,102, 200V, SMD 0805               | 1     |
| 10  | C9               | Cap, 225, 50V, SMD 0805               | 1     |
| 11  | C10              | Cap, 221, 50V, SMD 0805               | 1     |
| 12  | C13              | E-Cap,120uF, 400V, 105℃, DIP          | 1     |
| 13  | C15              | E-Cap, 22uF, 50V, 105℃, DIP           | 1     |
| 14  | C16, C17         | E-Cap, 680uF, 25V, 105℃, DIP, Low ESR | 2     |
| 15  | C18              | E-Cap, 220uF, 25V, 105℃,DIP, Low ESR  | 1     |
| 16  | CN1              | AC Input (3 Pin)                      | 1     |
| 17  | CR1              | FR107, DIP                            | 1     |
| 18  | CR2              | 1N4148, SMD                           | 1     |
| 19  | CR3              | FR104, DIP                            | 1     |
| 20  | CR4, CR5         | N.A.                                  |       |
| 21  | CR6              | SBR10U100CT                           | 1     |
| 22  | CR7              | ISS181, SMD                           | 1     |
| 23  | F1               | 3.15A, 250V, DIP                      | 1     |
| 24  | HS1              | Heat sink of Rectifier                | 1     |
| 25  | HS2              | Heat sink of MOSFET                   | 1     |
| 26  | J1, J2, J3       | 0R, SMD0805                           | 3     |
| 27  | J4, J5           | 0R, SMD1206                           | 2     |
| 28  | L1               | Common Chock, 700uH, DIP              | 1     |
| 29  | L2               | Common Chock,10mH, DIP                | 1     |
| 30  | L3               | 1.6uH, DIP                            | 1     |
| 31  | NTC1             | N.A.                                  |       |
| 32  | NTC2             | N.A.                                  |       |

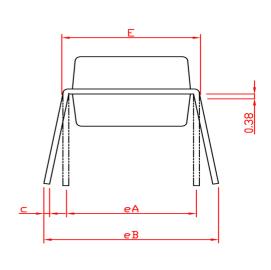



# Bom List (Cont.)

| DOII | List (Oont.)                   |                         |   |
|------|--------------------------------|-------------------------|---|
| 33   | PCB                            | FR4, 102mm*39.0mm*1.0mm | 1 |
| 34   | Q1                             | FPQF10N60,T0220         | 1 |
| 35   | Q2                             | N.A.                    |   |
| 36   | Q3                             | N.A.                    |   |
| 37   | R1A, R1B                       | 1M, 5%, SMD1206         | 2 |
| 38   | R2, R7, R8, R11, R14, R17, R32 | N.A.                    |   |
| 39   | R3A, R3B                       | N.A.                    |   |
| 40   | R4A, R4B, R5A, R5B             | 68K, 5%, SMD1206        | 4 |
| 41   | R6, R33, R34                   | 0R, SMD0805             | 3 |
| 42   | R9                             | 0.33R, 1W, 1%, Rcs      | 1 |
| 43   | R10                            | 2.2R, 5%, SMD1206       | 1 |
| 44   | R12                            | 100K, 1%, SMD0805       | 1 |
| 45   | R13                            | 33R, 5%, SMD0805        | 1 |
| 46   | R15A, R15B                     | 22R, 5%, SMD1206        | 2 |
| 47   | R16                            | 0.0170R, 4.0mm          | 1 |
| 48   | R18                            | 68K, 1%, SMD0805        | 1 |
| 49   | R19                            | 62K, 5%, SMD0805        | 1 |
| 50   | R20                            | 100R, 5%, SMD0805       | 1 |
| 51   | R21                            | 1.5K, 5%, SMD0805       | 1 |
| 52   | R22                            | 10R, 5%, SMD0805        | 1 |
| 53   | R23                            | 2.2K, 5%, SMD0805       | 1 |
| 54   | R24                            | 16.5K, 1%, SMD0805      | 1 |
| 55   | R25, R26                       | 5K, 1%, SMD0805         | 2 |
| 56   | R28                            | 15K, 5%, SMD0805        | 1 |
| 57   | R29,R30                        | 4.3K,1%, SMD0805        | 2 |
| 58   | R31                            | 1.5K, 1%, DIP           | 1 |
| 59   | T1                             | P0T-3019, 550uH         | 1 |
| 60   | U1                             | GR8876, SOP-8           | 1 |
| 61   | U2                             | PC817, DIP-4            | 1 |
| 62   | U3                             | TSM103, SOP-8           | 1 |
| 63   | ZD1                            | N.A.                    |   |
|      | •                              | •                       | • |




# Package Information

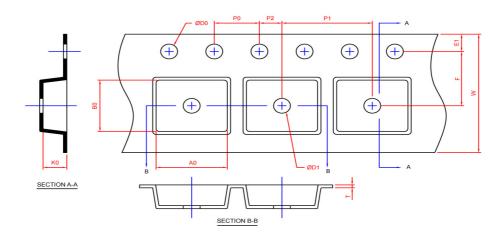


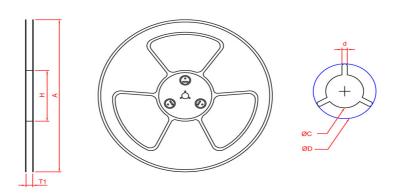

|        | SOP-8  |       |        |       |  |  |
|--------|--------|-------|--------|-------|--|--|
| SYMBOL | MILLIM | ETERS | INCHES |       |  |  |
|        | MIN.   | MAX.  | MIN.   | MAX.  |  |  |
| Α      |        | 1.75  |        | 0.069 |  |  |
| A1     | 0.10   | 0.25  | 0.004  | 0.010 |  |  |
| A2     | 1.25   |       | 0.049  |       |  |  |
| b      | 0.31   | 0.51  | 0.012  | 0.020 |  |  |
| С      | 0.17   | 0.25  | 0.007  | 0.010 |  |  |
| D      | 4.80   | 5.00  | 0.189  | 0.197 |  |  |
| Е      | 5.80   | 6.20  | 0.228  | 0.244 |  |  |
| E1     | 3.80   | 4.00  | 0.150  | 0.157 |  |  |
| е      | 1.27   | BSC   | 0.050  | BSC   |  |  |
| h      | 0.25   | 0.50  | 0.010  | 0.020 |  |  |
| L      | 0.40   | 1.27  | 0.016  | 0.050 |  |  |
| θ      | 0°     | 8°    | 0°     | 8°    |  |  |



# Package Information







|        | DIP-8    |        |        |       |  |  |
|--------|----------|--------|--------|-------|--|--|
| SYMBOL | MILLI    | METERS | INCHES |       |  |  |
|        | MIN.     | MAX.   | MIN.   | MAX.  |  |  |
| Α      |          | 5.33   |        | 0.210 |  |  |
| A1     | 0.38     |        | 0.015  |       |  |  |
| A2     | 2.92     | 4.95   | 0.115  | 0.195 |  |  |
| b      | 0.36     | 0.56   | 0.014  | 0.022 |  |  |
| b2     | 1.14     | 1.78   | 0.045  | 0.070 |  |  |
| С      | 0.20     | 0.35   | 0.008  | 0.014 |  |  |
| D      | 9.01     | 10.16  | 0.355  | 0.400 |  |  |
| D1     | 0.13     |        | 0.005  |       |  |  |
| E      | 7.62     | 8.26   | 0.300  | 0.325 |  |  |
| E1     | 6.10     | 7.11   | 0.240  | 0.280 |  |  |
| е      | 2.54 BSC |        | 0.100  | BSC   |  |  |
| eA     | 7.62 BSC |        | 0.300  | ) BSC |  |  |
| eB     |          | 10.92  |        | 0.430 |  |  |
| L      | 2.92     | 3.81   | 0.115  | 0.150 |  |  |



## Carrier Tape & Reel Dimensions

#### SOP-8





| Application | Α                  | Н                 | T1                 | С                  | d        | D                 | W         | E1                 | F         |
|-------------|--------------------|-------------------|--------------------|--------------------|----------|-------------------|-----------|--------------------|-----------|
|             | 330.0 <u>±</u> 2.0 | 50 MIN.           | 12.4+2.00<br>-0.00 | 13.0+0.50<br>-0.20 | 1.5 MIN. | 20.2 MIN.         | 12.0±0.30 | 1.75 <u>+</u> 0.10 | 5.5±0.05  |
| SOP-8       | P0                 | P1                | P2                 | D0                 | D1       | T                 | A0        | В0                 | K0        |
|             | 4.0 <u>±</u> 0.10  | 8.0 <u>±</u> 0.10 | 2.0 <u>±</u> 0.05  | 1.5+0.10<br>-0.00  | 1.5 MIN. | 0.6+0.00<br>-0.40 | 6.40±0.20 | 5.20±0.20          | 2.10±0.20 |

(mm)

### **Devices Per Unit**

| Application | Carrier Width | Cover Tape Width | Devices Per Reel |
|-------------|---------------|------------------|------------------|
| SOP-8       | 12            | -                | 2500             |

Grenergy OPTO, Inc. reserves the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.