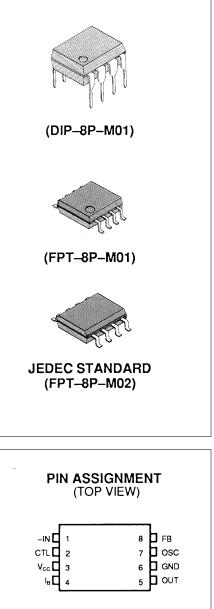
DATA SHEET =


 $(T_{A} = 25^{\circ}C)$

MB3776A SWITCHING REGULATOR CONTROLLER

BUILT-IN POWER ON/OFF CONTROL APPLICABLE TO FIXED GAIN STANDARD AND LOW-VOLTAGE OPERATION

MB3776A is a PWM system switching regulator controller. Because of its low operating supply voltage and power-down, the MB3776A is ideal for use in DC/DC converters for battery-powered portable equipment.

- Wide supply voltage range (2V to 15V)
- Wide oscillation frequency range, high-frequency oscillation (10 kHz to 500 kHz)
- Push-pull output. Drive current set with external resistor
- Built-in idle period circuit
- Internally set error amplifier gain, few external components
- Built-in power-down function

SU

FU

ABSOLUTE MAXIMUM RATINGS (see Note)

ABSOLUTE WANIMUW RATINGS (See Note)				$(1_{A} = 25 \text{ C})$		
Rating	Symbol	Condit	ion	Value	Unit	
Power supply voltage	V _{CC}			16	V	
Error amplifier input voltage	VI			-0.3 to +10	V	
Output source current	I _{SOURCE}			-50	mA	
Output sink current	I _{SINK}			50		
Power dissipation	P _D	$T_A \le 25^{\circ}C(DIP)$		550		
		$T_{A\leq}25^{\circ}C$	EIAJ	*570	mW	
		(SOP)	JEDEC	*430		
Operating temperature	Тор			-30 to +75	°C	
Storage temperature	T _{STG}			-55 to +125	°C	

his device contains circuitry to protect the inp

*The packages are mounted on the epoxy board (4 cm x 4 cm x 1.5 mm)

Note: Permanent device damage may occur if the above Absolute Maximum Ratings are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields. However, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit.

BLOCK DIAGRAM

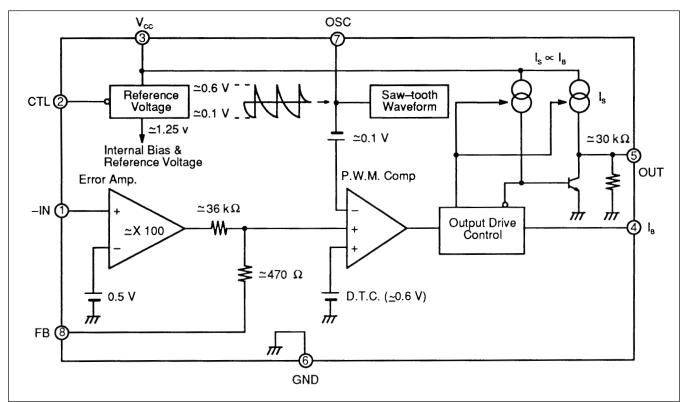


Figure 1. MB3776A Block Diagram

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol				
		Min	Тур	Мах	Unit
Power Supply Voltage	V _{CC}	2.0		15	V
Error Amp. Input Voltage	VI	-0.2		1.0	V
Output Source Current	ISOURCE	-40			mA
Output Sink Current	I _{SINK}			40	mA
Phase Compensation Capacitor	CP		0.1		μF
Timing Capacitor	CT	100	1000	10000	pF
Timing Resistor	R _T	1.0	3.0	5.0	kΩ
Oscillator Frequency	fosc	10	200	500	kHz
Operating Temperature	T _{OP}	-30	25	75	°C

ELECTRICAL CHARACTERISTICS

 $(TA = 25^{\circ}C V = 6 V)$

Parameter		Symbol	Value			
	Condition		Min	Тур	Max	Unit
Reference Section and Error Amplifier Section	ction			•		
Input Threshold Voltage	V _{FB} = 450 mV	VT	470	500	500	mV
V _T Input Stability	$V_{CC} = 2.0 V \text{ to } 6.0 V$	V _{TdV1}	-5		5	mV
	V _{CC} = 6.0V to 15V	5V _{TdV2}	-5		5	mV
V _T Temperature Stability	$T_A = -30^\circ C$ to $+75^\circ C$	V _{TdT}	-3		3	%
Input Bias Current	V _{IN} = 0V to 0.6V	Ι _Β	-1.0	-0.2	1.0	μΑ
Voltage Gain		A _V	70	100	145	V/V
Frequency Band Width	$A_V = 0 \text{ dB}$	BW		6	-	MHz
Sawtooth Waveform Oscillator Section	on					
Oscillator Frequency	R _T = 3.0 kΩ		160	200	240	kHz
	C _T = 1000 pF	fosc				
Frequency Input Stability	V _{CC} = 2.0V to 15V	f _{dV}		±2		%
Frequency Temperature Stability	T _{A =} -30 °C to +75 °C	f _{dT}		±10		%
Under Lockout Protection	·					1
Threshold Voltage		V _{TH}		1.4		V
Dead-Time Control Section	I	-11		1	1	
Maximum Duty Cycle	C _T = 1000 pF R _T = 3.0 kΩ V _{FB} = 0.9V	t _{DUTY}	60	70	85	%
Output Section				•		
Output Source Current	R _{B =} 820Ω, V _O = 1V	I _{SOURCE}	-40	-30	-20	mA
Output Sink Current	R _B = 820Ω, V _O = 0.3 V	I _{SINK}	30	60		mA
High-Level Output Voltage	R _B = 820 , V _O = 7V I _O =15 mA	V _{OH}	5.5	6.0		V
Output Voltage	$V_{CTL} = V_{CC}, I_O = 3m A$	V _{OL}		0.1	0.2	V
Control Section	· ·	· ·		•	•	
Input Off Condition		I _{OFF}	-300			μΑ
Input On Condition		I _{ON}			-700	μΑ
Control Terminal Current	V _{CC} = 7V, V _{CTL} = 0 V	I _{CTL}	-1.3	-1		mA
Control Section						
Standby Current	$V_{CTL} = V_{CC}$ or C_{TL} Terminal Open	I _{CCS}			0.5	μΑ
Average Supply Current	I _{CTL} = -700 μA R _B = 820Ω	I _{CC}		4.5	8	mA

TEST CIRCUIT

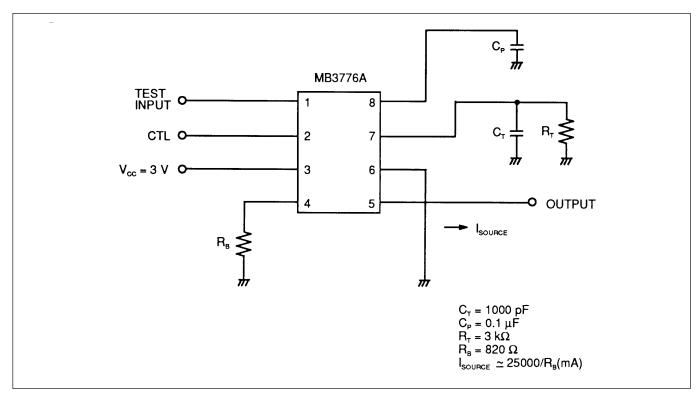


Figure 2. MB3776A Test Circuit

TIMING CHART (Internal Waveform)

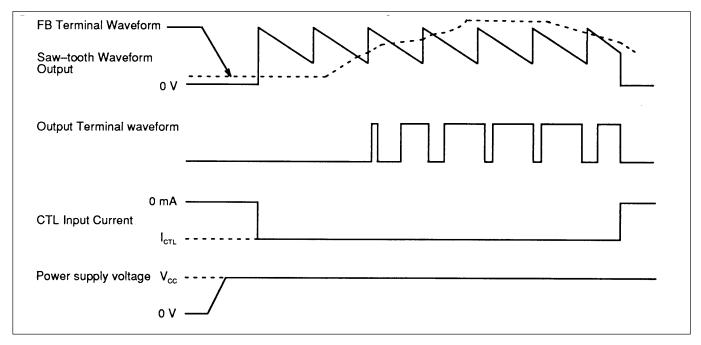
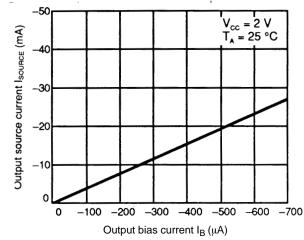



Figure 3. MB3776A Timing Chart

TYPICAL PERFORMANCE CHARACTERISTICS

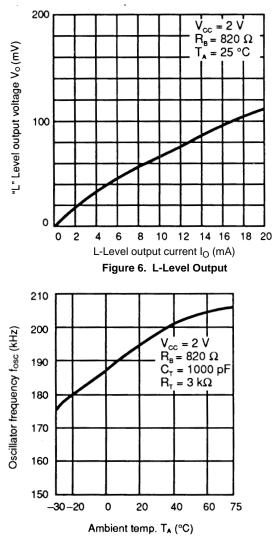


Figure 8. Ambient Temp. vs. Oscillator Frequency

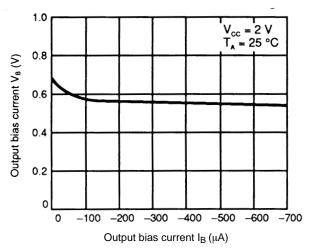
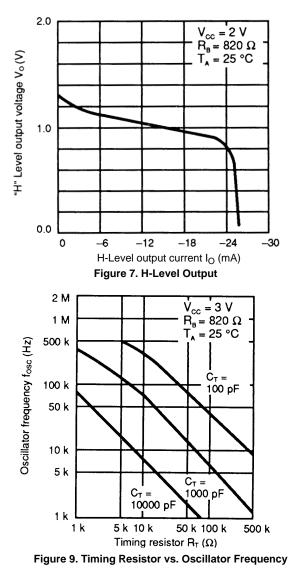
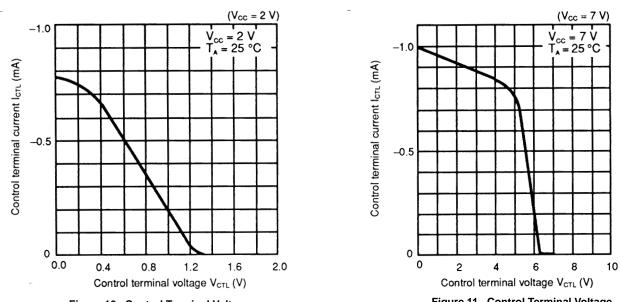
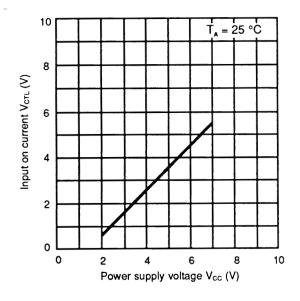
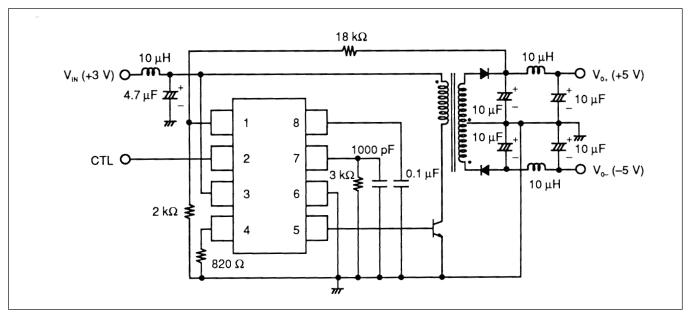
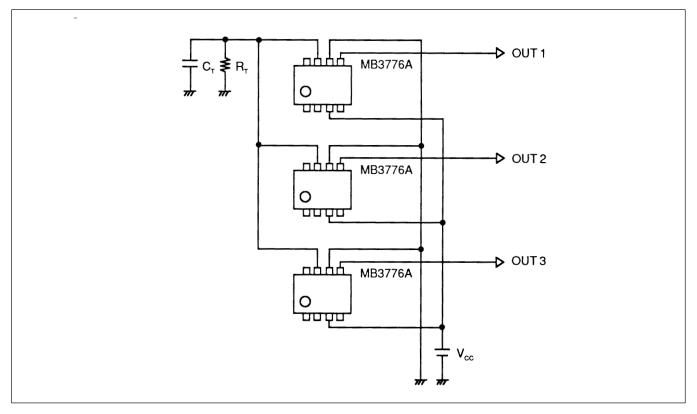




Figure 5. Output Bias Current vs. Output Bias Voltage

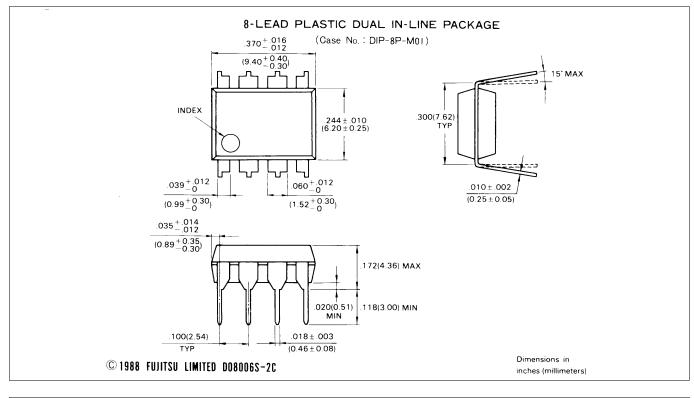
TYPICAL PERFORMANCE CHARACTERISTICS, continued

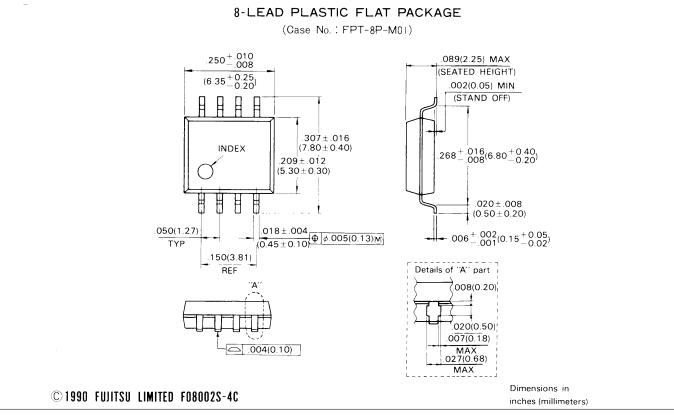
Figure 11. Control Terminal Voltage vs. Control Terminal Current

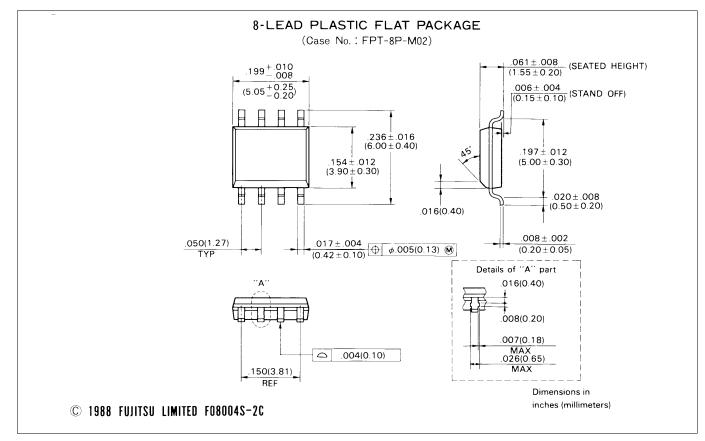

Figure 12 . Power Supply Voltage vs. Input On Voltage

EXAMPLE APPLICATION CIRCUIT




Synchronization

To synchronize MB3776A controllers, the OSC terminal of each IC is shared and the same specified capacitor and resistor used on a signal IC application is connected for self-excitation oscillation. The CTL terminal controls power on/off of each IC.



PACKAGE DIMENSIONS

PACKAGE DIMENSIONS, continued

All Rights Reserved.

Circuit diagrams utilizing Fujitsu products are included as a means of illustrating typical semiconductor applications. Complete Information sufficient for construction purposes is not necessarily given.

The information contained in this document has been carefully checked and is believed to be reliable. However, Fujitsu assumes no responsibility for inaccuracies.

The information contained in this document does not convey any license under the copyrights, patent rights or trademarks claimed and owned by Fujitsu.

Fujitsu reserves the right to change products or specifications without notice.

No part of this publication may be copied or reproduced in any form or by any means, or transferred to any third party without prior written consent of Fujitsu.

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED Integrated Circuits and Semiconductor Marketing Furukawa Sogo Bldg., 6–1, Marunouchi 2–chome Chiyoda–ku, Tokyo 100, Japan Tel: (03) 3216–3211 Telex: 781–2224361 FAX: (03) 3216–9771

North and South America

FUJITSU MICROELECTRONICS, INC. Integrated Circuits Division 3545 North First Street San Jose, CA 95134–1804 USA Tel: 408 –922–9000 Telex: 910–671–4915 FAX: 408–432–9044

Europe

FUJITSU MIKROELEKTRONIK GMBH Am Siebenstein 6–10, 6072 Dreieich-Buchschlag, Germany Tel: (06103) 690–0 Telex: 411963 fmg d FAX: (06103) 690–122

Asia

FUJITSU MICROELECTRONICS ASIA PTE LIMITED 51 Bras Basah Road, Plaza By The Park, #06–04/07, Singapore 0718 Tel: 336–1600 Telex: 55573 FAX: 336–1609