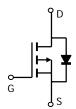


AO4409

P-Channel Enhancement Mode Field Effect Transistor

General Description

The AO4409/L uses advanced trench technology to provide excellent $R_{\rm DS(ON)}$, and ultra-low low gate charge. This device is suitable for use as a load switch or in PWM applications. AO4409 and AO4409L are electrically identical.


- -RoHS Compliant
- -AO4409L is Halogen Free

Features

$$\begin{split} &V_{DS}\left(V\right) = -30V \\ &I_{D} = -15 \text{ A } (V_{GS} = -10V) \\ &\text{Max } R_{DS(ON)} < 7.5 \text{m} \Omega \left(V_{GS} = -10V\right) \\ &\text{Max } R_{DS(ON)} < 12 \text{m} \Omega \left(V_{GS} = -4.5V\right) \end{split}$$

UIS Tested! Rg, Ciss,Coss,Crss Tested

Absolute Maximum Ratings T _A =25°C unless otherwise noted								
Parameter		Symbol	Maximum	Units				
Drain-Source Voltage		V_{DS}	-30	V				
Gate-Source Voltage		V_{GS}	±20	V				
Continuous Drain	T _A =25°C		-15					
Current AF	T _A =70°C	I_D	-12.8	Α				
Pulsed Drain Current ^B		I _{DM}	-80					
Avalanche Current ^G		I _{AR}	30	Α				
Repetitive avalanche energy L=0.3mH ^G		E _{AR}	135	mJ				
	T _A =25°C	P_{D}	3	W				
Power Dissipation A	T _A =70°C]' D	2.1	VV				
Junction and Storage Temperature Range		T_J, T_{STG}	-55 to 150	°C				

Thermal Characteristics								
Parameter	Symbol	Тур	Max	Units				
Maximum Junction-to-Ambient A	t ≤ 10s	В	26	40	°C/W			
Maximum Junction-to-Ambient ^A	Steady-State	$ R_{\theta JA}$	50	75	°C/W			
Maximum Junction-to-Lead ^C	Steady-State	$R_{ heta JL}$	14	24	°C/W			

Electrical Characteristics (T_J=25°C unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units	
STATIC F	PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	I _D =-250μA, V _{GS} =0V		-30			V
I _{DSS}	Zero Gate Voltage Drain Current	V_{DS} =-30V, V_{GS} =0V				-5	μА
			T _J =55°C			-25	
I _{GSS}	Gate-Body leakage current	V _{DS} =0V, V _{GS} =±20V				±100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=-250 \mu A$	V _{DS} =V _{GS} I _D =-250μA		-1.9	-2.7	V
I _{D(ON)}	On state drain current	V _{GS} =-10V, V _{DS} =-5V		-80			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-10V, I _D =-15A			6.2	7.5	0
			T _J =125°C		8.2	11.5	mΩ
		V _{GS} =-4.5V, I _D =-10A		9.5	12	mΩ	
9 _{FS}	Forward Transconductance	V _{DS} =-5V, I _D =-15A		35	50		S
V_{SD}	Diode Forward Voltage	I _S =-1A,V _{GS} =0V		-0.71	-1	V	
Is	Maximum Body-Diode Continuous Curr	laximum Body-Diode Continuous Current				-5	Α
DYNAMIC	PARAMETERS		'		•		
C _{iss}	Input Capacitance				5270	6400	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =-15V, f=1MHz V_{GS} =0V, V_{DS} =0V, f=1MHz			945		pF
C _{rss}	Reverse Transfer Capacitance				745		pF
R_g	Gate resistance				2	3	Ω
SWITCHI	NG PARAMETERS	-	· ·		•	I.	I.
Q_g	Total Gate Charge	V _{GS} =-10V, V _{DS} =-15V, I _D =-15A			100	120	nC
Q _g (4.5V)	Gate Charge				51.5		nC
Q_{gs}	Gate Source Charge				14.5		nC
Q_{gd}	Gate Drain Charge				23		nC
t _{D(on)}	Turn-On DelayTime				14		ns
t _r	Turn-On Rise Time	V_{GS} =-10V, V_{DS} =-15V, R_L =1 Ω , R_{GEN} =3 Ω			16.5		ns
t _{D(off)}	Turn-Off DelayTime				76.5		ns
t _f	Turn-Off Fall Time				37.5		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =-15A, dI/dt=100A/μs			36.7	45	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =-15A, dI/dt=100A/μs			28		nC

A: The value of R_{0JA} is measured with the device mounted on $1in^2$ FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

Rev 6 : Jan 2008

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

B: Repetitive rating, pulse width limited by junction temperature.

C. The R $_{\theta JA}$ is the sum of the thermal impedence from junction to lead R $_{\theta JL}$ and lead to ambient.

D. The static characteristics in Figures 1 to 6,12,14 are obtained using <300µs pulses, duty cycle 0.5% max.

E. These tests are performed with the device mounted on 1 in 2 FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The SOA curve provides a single pulse rating.

F. The current rating is based on the $t \le 10s$ thermal resistance rating.

G. EAR and IAR ratings are based on low frequency and duty cycles such that Tj(start)=25C for each pulse.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

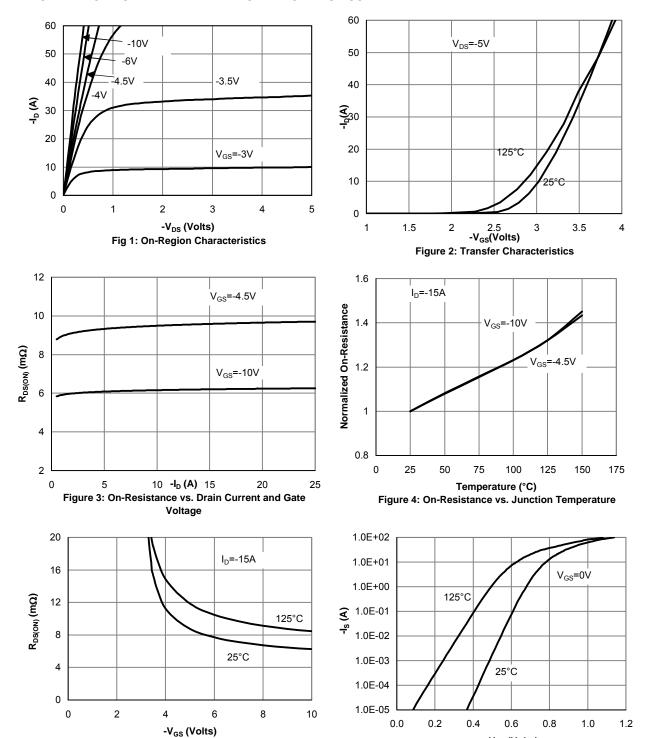



Figure 5: On-Resistance vs. Gate-Source Voltage

-V_{SD} (Volts)

Figure 6: Body-Diode Characteristics

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

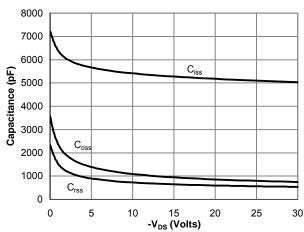
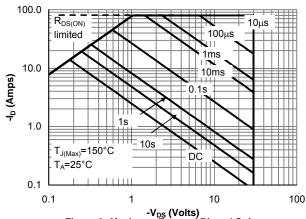
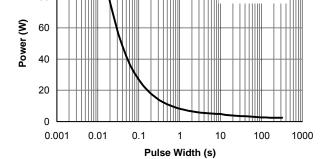
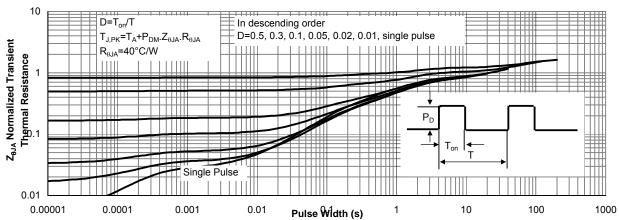




Figure 8: Capacitance Characteristics

T_{J(Max)}=150°C


T_A=25°C

-V_{DS} (Volts) Figure 9: Maximum Forward Biased Safe Operating Area (Note E)

Figure 10: Single Pulse Power Rating Junction-to-Ambient (Note E)

100

80

Figure 11: Normalized Maximum Transient Thermal Impedance