
DISCRETE SEMICONDUCTORS

Product specification Supersedes data of May 1996 1996 Sep 26

1996 Sep 26

High-voltage soft-recovery rectifier

DESCRIPTION

Rugged glass package, using a high

This package is hermetically sealed

temperature alloyed construction.

and fatigue free as coefficients of

FEATURES

- · Glass passivated
- · High maximum operating temperature
- · Low leakage current
- · Excellent stability
- Soft-recovery switching characteristics
- · Compact construction.

APPLICATIONS

- Grid 2 supply in colour television picture tubes
- High-voltage applications for:
 - High frequencies
 - Switching applications.

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{RSM}	non-repetitive peak reverse voltage		-	1800	V
V _{RRM}	repetitive peak reverse voltage		-	1800	V
V _{RW}	working reverse voltage		_	1500	V
I _{F(AV)}	average forward current	averaged over any 20 ms period; $T_{tp} = 25 \text{ °C}$; lead length = 10 mm; see Fig.2; see also Fig.4	_	85	mA
		averaged over any 20 ms period; T _{amb} = 60 °C; PCB mounting (see Fig.6); see Fig.3; see also Fig.4	_	50	mA
I _{FRM}	repetitive peak forward current		-	800	mA
I _{FSM}	non-repetitive peak forward current	t \leq 10 ms; half sinewave; T _j = T _{j max} prior to surge; V _R = V _{RWmax}	-	5	A
T _{stg}	storage temperature		-65	+120	°C
Tj	junction temperature		-65	+120	°C

Product specification

expansion of all used parts are matched.

The package is designed to be used in an insulating medium such as resin, oil or SF6 gas.

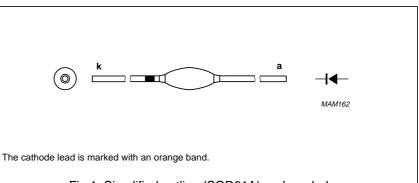


Fig.1 Simplified outline (SOD61A) and symbol.

BY584

High-voltage soft-recovery rectifier

BY584

ELECTRICAL CHARACTERISTICS

 $T_j = 25 \ ^{\circ}C$; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _F	forward voltage	$I_F = 100 \text{ mA}; T_j = T_{j \text{ max}}; \text{ see Fig.5}$	_	_	8.5	V
I _R	reverse current	$V_{R} = V_{RWmax}; T_{j} = T_{j max}$	_	-	3	μA
Qr	recovery charge	when switched from I_F = 100 mA to $V_R \ge 100$ V and dI_F/dt = –200 mA/µs; see Fig.7	_	_	1	nC
t _f	fall time	when switched from I_F = 100 mA to $V_R \ge 100$ V and dI_F/dt = -200 mA/µs; see Fig.7	100	-	_	ns
t _{rr}	reverse recovery time	when switched from I_F = 100 mA to $V_R \ge 100$ V and dI_F/dt = –200 mA/µs; see Fig.7	_	200	_	ns
C _d	diode capacitance	V _R = 0 V; f = 1 MHz	_	2	_	pF

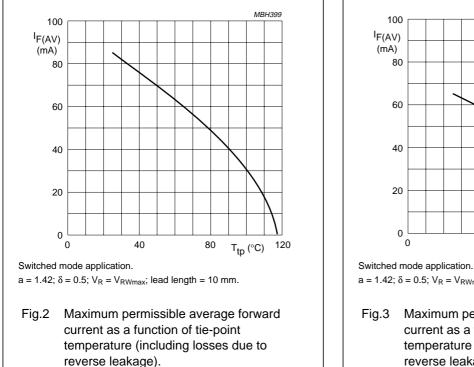
THERMAL CHARACTERISTICS

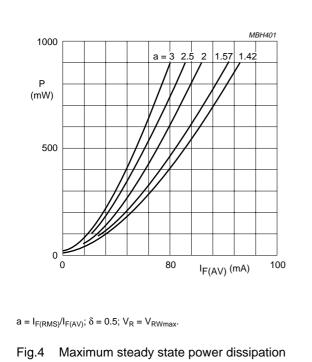
SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th j-tp}	thermal resistance from junction to tie-point	lead length = 10 mm	100	K/W
R _{th j-a}	thermal resistance from junction to ambient	note 1	155	K/W

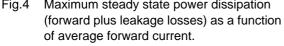
Note

1. Device mounted on epoxy-glass printed-circuit board, 1.5 mm thick; thickness of copper ≥40 μm, see Fig.6. For more information please refer to the *"General Part of associated Handbook"*.

MBH400

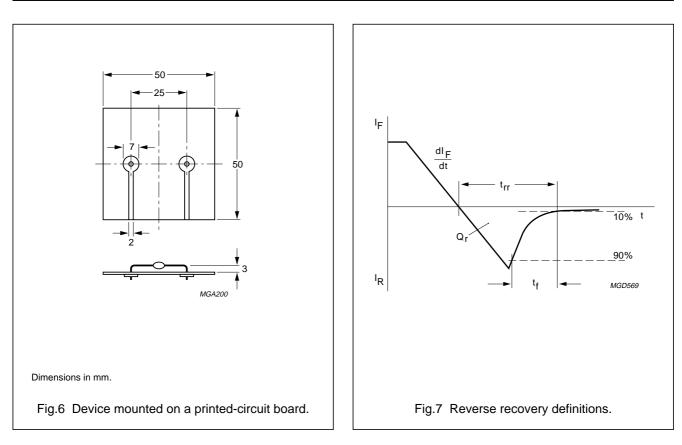

T_{amb} (°C) 120


80

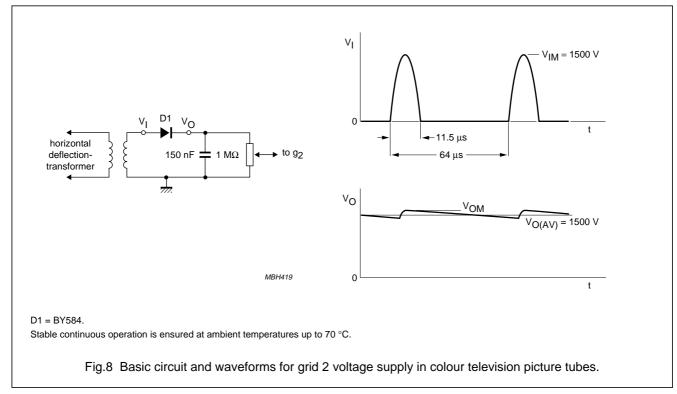

High-voltage soft-recovery rectifier

BY584

GRAPHICAL DATA

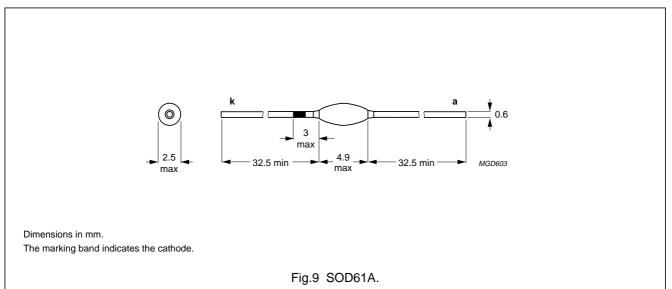


40


Fig.5 Forward current as a function of maximum forward voltage.

High-voltage soft-recovery rectifier

BY584


APPLICATION INFORMATION

High-voltage soft-recovery rectifier

BY584

PACKAGE OUTLINE

DEFINITIONS

Data Sheet Status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
more of the limiting values	accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or may cause permanent damage to the device. These are stress ratings only and operation
	any other conditions above those given in the Characteristics sections of the specification limiting values for extended periods may affect device reliability.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.