

CD4048B Types

CMOS Multifunction **Expandable 8-Input Gate**

High-Voltage Types (20-Volt Rating)

CD4048B is an 8-input gate having four control inputs. Three binary control inputs - Ka, Kb, and Kc - provide the implementation of eight different logic functions. These functions are OR, NOR, AND, NAND, OR/AND, OR/NAND, AND/OR and AND/NOR.

A fourth control input, Kd, provides the user with a 3-state output. When control input Kd is high, the output is either a logic 1 or a logic 0 depending on the inner states. When control input Kd is low, the output is an open circuit. This feature enables the user to connect this device to a common bus line.

MAXIMUM RATINGS, Absolute-Maximum Values:

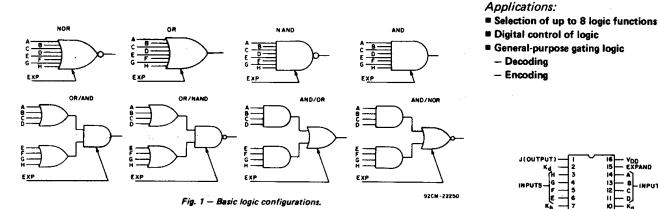
DC SUPPLY-VOLTAGE RANGE, (VDD)

POWER DISSIPATION PER PACKAGE (PD):

DEVICE DISSIPATION PER OUTPUT TRANSISTOR

LEAD TEMPERATURE (DURING SOLDERING):

The CD4048B-series types are supplied in 16-lead hermetic dual-in-line ceramic packages (D and F suffixes), 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline package (NSR suffix), and in chip form (H suffix).


BINARY CONTROL INPUTS FUNCTION CONTROL Ka Kb Kc Ka CONTROL					
$\begin{array}{c ccccc} & - & - & - & - & - & - & - & - & - & $					
V _{SS} ≈8 V _{DD} ≈16					
9205-22249 Functional Diagram					
runcuonal Diagram					

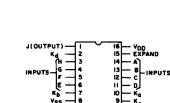
Features:

Three-state output

- Decoding Encoding

- Many logic functions available in one package
- Standardized, symmetrical output characteristics
- 100% tested for quiescent current at 20 V
- Maximum input current of 1 µA at 18 V (full package-temperature range), 100 nA at 18 V and 25°C
- Noise margin (full package-temperature range) = 1 V at V_{DD} =5 V, 2 V at V_{DD} = 10 V, 2.5 V at V_{DD}=15 V
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices'

Voltages referenced to V_{SS} Terminal)-0.5V to +20V


For T_A = +100°C to +125°C.....Derate Linearity at 12mW/°C to 200mW

DC INPUT CURRENT, ANY ONE INPUT±10mA

RECOMMENDED OPERATING CONDITIONS

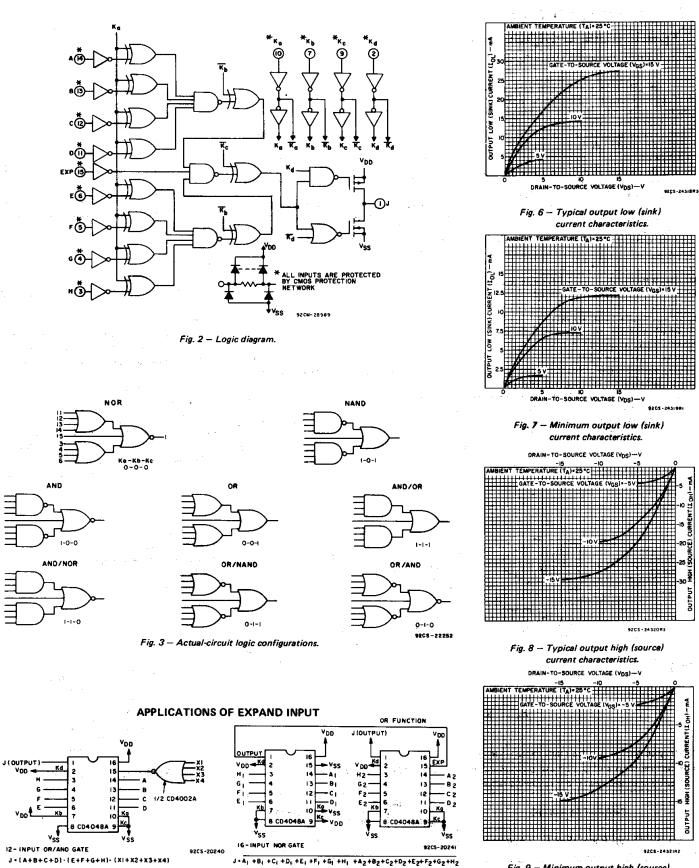
For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:

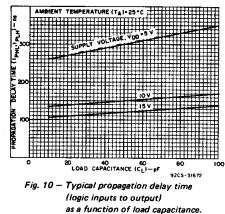
CHARACTERISTIC	LIM		
CHARACTERISTIC	MIN.	MAX.	UNITS
Supply-Voltage Range (For T _A = Full Package Temperature Range)	3	18	v

9205-202468

TERMINAL ASSIGNMENT

CD4048B Types




Fig. 4 – 12-input OR/AND gate.

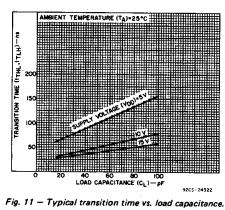
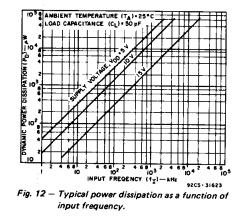

Fig. 5 — 16-input NOR gate.

Fig. 9 — Minimum output high (source) current characteristics.

STATIC ELECTRICAL CHARACTERISTICS

CHARACTER-	CONI		ŅS	LIMITS AT INDICATED TEMPERATURES (°C)							
ISTIC	Vo	VIN	VDD						+25		UNITS
	(V)	(V)	(V)	55	40	+85	+125	Min.	Тур.	Max.	
Quiescent Device	-	0,5	5	0.25	0.25	7.5	7.5	-	0.01	0.25	[
Current,		0,10	10	0.5	0.5	15	15	-	0.01	0.5	μA
IDD Max.		0,15	15	1	1	30	30	-	0.01	1	1 "
	_	0,20	20	5	5	150	150	-	0.02	5	
Output Low	0.4	0,5	5	0.64	0.61	0.42	0.36	0.51	1	·	
(Sink) Current	0.5	0,10	10	1.6	1.5	1.1	0.9	1.3	2.6	-	
IOL Min.	1.5	0,15	15	4.2	4	2.8	2.4	3.4	6.8	-	
Output High	4.6	0,5	5	-0.64	-0.61	-0.42	-0.36	-0.51	1	. –	mA
(Source)	2.5	0,5	5	-2	1.8	-1.3	1.15	-1.6	-3.2	-	1
Current, IOH Min.	9,5	0,10	10	~1.6	-1.5	-1.1	-0.9	-1.3	-2.6		
TOH With.	13.5	0,15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	-	
Output Voltage:	-	0,5	5		0	.05 – 0 0.05				0.05	
Low-Level, VOL Max.	-	0,10	10	0.05				-	0	0.05	
VOL Wax.	-	0,15	15	0.05			÷	0	0.05	. v	
Output Voltage:	-	0,5	5		4	.95	1	4.95	5	-	· v
High-Level,		0,10	10	9.95 9.95 10				~-	1		
VOH Min.	– .	0,15	15	14.95			14.95	15	+		
Input Low	0.5,4.5	-	5		1	.5			-	1.5	
Voltage,	1,9		10			3		—		3	
VIL Max.	1.5,13.5	-	15			4		-	_	4	
Input High	0.5,4.5	-	5		3	1.5		3.5	—.	—	v
Voltage,	1,9	_	10	7 7				_			
VIH Min.	1.5,13.5	ł	15	11 11					-		
Input Current IIN Max.		0,18	18	±0.1	±0.1	±1	±1	-	±10 ⁻⁵	±0.1	μΑ
3-State Output Current, IOUT	0,18	0,18	18	±0.4	±0.4	±12	±12	-	±10 ⁻⁴	±0.4	μΑ



IMPLEMENTATION OF EXPAND INPUT FOR 9 OR MORE INPUTS

OUTPUT FUNCTION	FUNCTION NEEDED AT EXPAND INPUT	OUTPUT BOOLEAN EXPRESSION
NOR	OR	J=(A+B+C+D+E+F+G+H)+(EXP)
OR	OR	J=(A+B+C+D+E+F+G+H)+(EXP)
AND	NAND	J=(ABCDEFGH)·(EXP)
NAND	NAND	J=(ABCDEFGH) (EXP)
OR/AND	NOR	J=(A+B+C+D) (E+F+G+H) (EXP)
OR/NAND	NOR	J=(A+B+C+D)·(E+F+G+H)·(EXP)
AND/NOR	AND	J=(ABCD)+(EFGH)+(EXP)
AND/OR	AND	J=(ABCD)+(EFGH)+(EXP)

Note: (EXP) designates the EXPAND function (i.e., $X_1 + X_2 + \ldots + X_N$).

NOTE: Refer to FUNCTION TRUTH TABLE for connection of unused inputs.

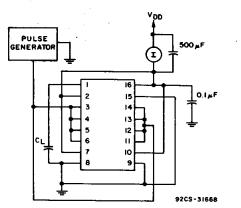
COMMERCIAL CMOS HIGH VOLTAGE ICs

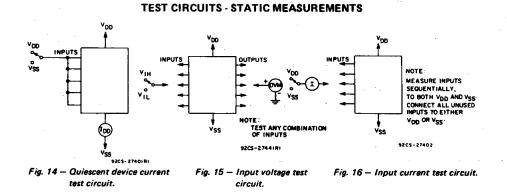
3

3-139

	TEST CONDI	TIONS	LIM	ITE	
CHARACTERISTIC		V _{DD}	LIMITS All Package Types		UNITS
•		v	Тур.	Max.	
Propagation Delay: tpHL,tpLH		5	300	600	
Inputs to Output and		10	150	300	
Ka to Output	-	15	120	240	
Kb to Output		5	225	450	
		10	85	170	· · · ·
·	· · ·	15.	55	. 110	
Kc to Output		5	140	280	
		10	50	100	
		15	40	80	
Expand Input to Output		5	190	380	ns
		10	90	180	
		15	65	130	
3-State Propagation Delay:	-	5	80	160	
Kd to Output tpHZ,tpLZ	$R_L=1 k\Omega$	10	35	70	
^t PZH ^{,t} PZL	See Fig.21	15	25	50	
Transition Time: tTHL, tTLH		5	100	200	
1112-1211		10	50	100	
		15	40	80	
Input Capacitance: Cl	Any inp	ut	5	7	pF
3-State Output Capacitance			5	10	pr

DYNAMIC CHARACTERISTICS at T_A=25°C, C_L=50 pF, Input t_r,t_f=20 ns, R_L=200 k Ω unless otherwise specified




Fig. 13 – Dynamic power dissipation test circuit.

FUNCTION TRUTH TABLE

OUTPUT FUNCTION	BOOLEAN EXPRESSION	ĸa	κ _b	κ _c	UNUSED INPUT*	
NOR	J≈A+B+C+D+E+F+G+H	0	0	0	v _{ss}	
OR	J≒A+B+C+D+E+F+G+H	0	0	1	v _{ss}	
OR/AND	J=(A+B+C+D)•(E+F+G+H)	0	1	0	V _{SS}	
OR/NAND	J=(A+B+C+D)•(E+F+G+H)	0	1	1	V _{SS}	
AND	J≂ABCDEFGH	1	0	0	V _{DD}	
NAND	J=ABCDEFGH	1	0	1	V _{DD}	
AND/NOR	J=ABCD+EFGH	1	1	0	V _{DD}	
AND/OR	J=ABCD+EFGH	1	1	1	VDD	
K _d =1 Normal Inverter Action						
K _d =0 High Impedance Output						

EXPAND Input=0

* See Figs. 1,2,3,4, and 5.

TEST CIRCUITS · DYNAMIC MEASUREMENTS

VDD OUTPUT -16 15 CL=ISpF OR 50pF 14 з NPUT 13 4 INPUT 5 12 6 П 10 OUTPUT 9 √ss

9205-31671

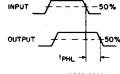


Fig. 17 – Test circuit for t_{PHL}, tTHL, and tTLH (AND) measurements.

9205-22264 Fig. 18 - Waveforms for t_{PHL} and t_{PHL} (AND).

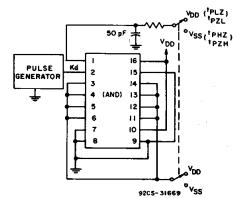
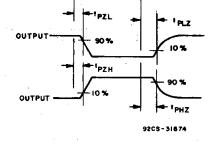



Fig. 20 – Test circuit for t_{PZL}, t_{PZH}, t_{PLZ}, and t_{PHZ} (AND).

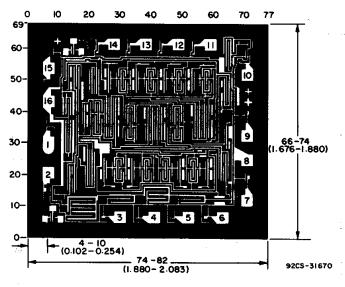
Kd

INPUT

OUTPUT

† THL

50%


10%

TLH

9265-22265

Fig. 19 - Waveforms for t_{THL}

and t_{TLH} (AND).

Dimensions and ped layout for CD4048BH.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

Fig. 21 – Waveforms for t_{PZL}, t_{PZH}, t_{PLZ}, and t_{PHZ} (AND).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated