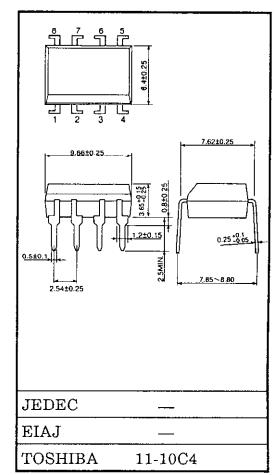
TOSHIBA

GaA l As IRED & PHOTO-IC

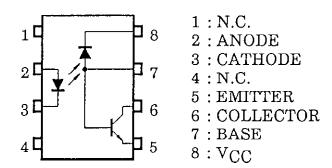
Digital Logic Ground Isolation

Line Receiver

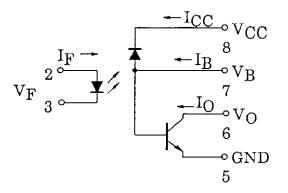

Microprocessor System Interfaces

Switching Power Supply Feedback Control

Analog Signal Isolation


The Toshiba TLP651 consists of a GaAℓAs high-output light emitting diode and a high speed detector of one chip photo diode-transistor. This unit is in an 8-lead DIP package. TLP651 has an internal base connection. This base pin should be used for analog applications or to enable operations. If the base pin is open, the output signal will be noisy depending on environmental conditions. In this case, TLP650 is suitable.

- Isolation Voltage
- : 5000V_{rms} (Min.)
- Switching Speed
- : $t_{pHL} = 0.3 \mu s$ (Typ.) : $t_{pLH} = 0.5 \mu s$ (Typ.) (R₁ = 1.9k Ω)
- TTL Compatible
- UL Recognized : UL1577, File No. E67349



Weight: 0.54g

Pin Configuration (Top View)

Schematic

Supplementary Information	Page (s)
Lead Form Options	31-32
Tape and Reel	39-40
Current Transfer Ratio	29-31

The information contained here is subject to change without notice.

The information contained herein is presented only as guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others. These TOSHIBA products are intended for usage in general electronic equipments (office equipment, communication equipment, domestic electrification, etc.) Please make sure that you consult with us before you use these TOSHIBA products in equipments which require high guality and/or reliability, and in equipments which could have major impact to the welfare of human life (atomic energy control, spaceship, traffic signal, combustion control, all types of safety devices, etc.). TOSHIBA cannot accept liability to any damage which may occur in case these TOSHIBA products were used in the mentioned equipments without prior consultation with TOSHIBA.

Maximum Ratings (Ta = 25°C)

CHARACTERISTIC			SYMBOL	RATING	UNIT	
LED	Forward Current	(Note 1)	I _F	25	mA	
	Forward Current Derating	(Note 2)	I _{FP}	50	mA	
	Peak Transient Forward Current	(Note 3)	I _{FPT}	1	A	
	Reverse Voltage		V _R	5	V	
	Diode Power Dissipation	(Note 4)	PD	45	mW	
DETECTOR	Output Current		Ι _Ο	8	mA	
	Peak Output Current		I _{OP}	16	mA	
	Output Voltage		Vo	-0.5~15	V	
	Supply Voltage		V _{CC}	-0.5~15	V	
	Base Current		Ι _Β	5	mA	
	Emitter-Base Reverse Voltage		V _{EB}	5	V	
	Output Power Dissipation	(Note 5)	Po	100	mW	
Operating Temperature Range		T _{opr}	-55~100	°C		
Storage Temperature Range		T _{stg}	-55~125	°C		
Lead Soldering Temperature (10 sec.) (Note 6)		T _{sol}	260	°C		
Total Package Power Dissipation		P _T	250	mW		
Isolation Voltage (AC, 1 min, R.H. \leq 60%) (Note 7)		BVS	5000	V _{rms}		

Note 1: Derate 0.8mA above 70°C.

Note 2: 50% duty cycle, 1ms pulse width. Derate 1.6mA/°C above 70°C.

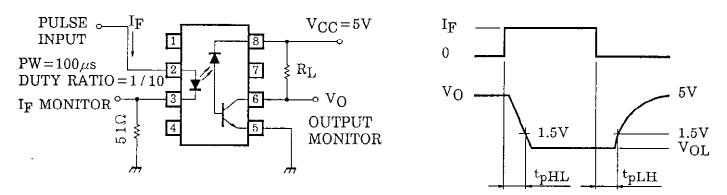
Note 3: Pulse width $\leq 1\mu$ s, 300pps.

Note 4: Derate 0.9mW/°C above 70°C.

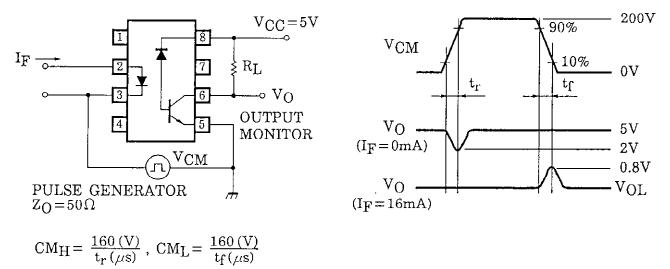
Note 5: Derate 2mW/°C above 70°C.

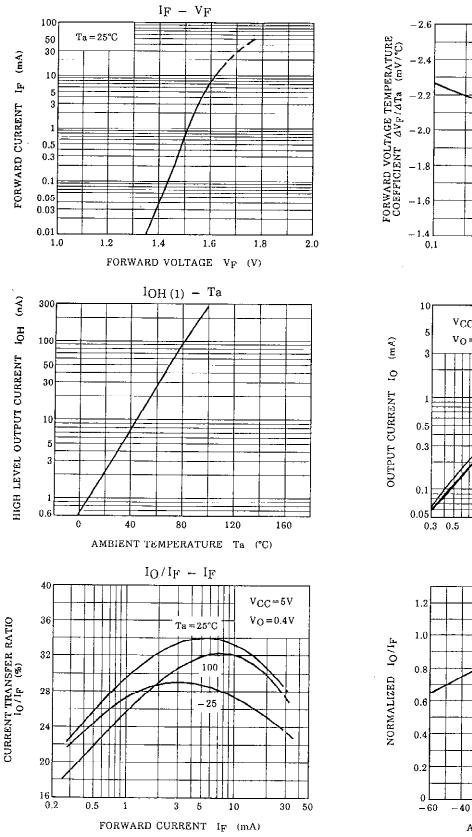
Note 6: Soldering portion of lead: up to 2mm from the body of the device.

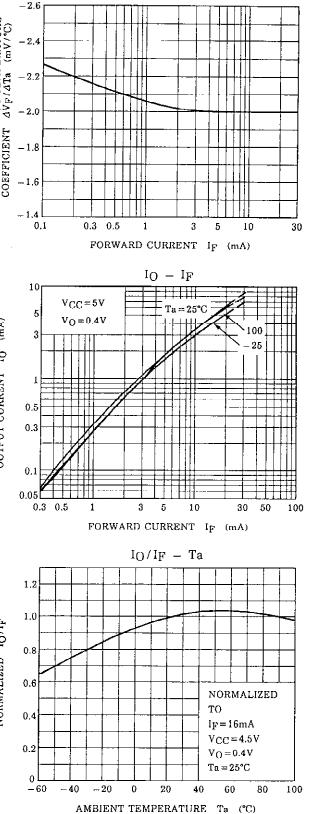
Note 7: Device considered a two terminal device: Pins 1, 2, 3 and 4 shorted together and pins 5, 6, 7 and 8 shorted together.

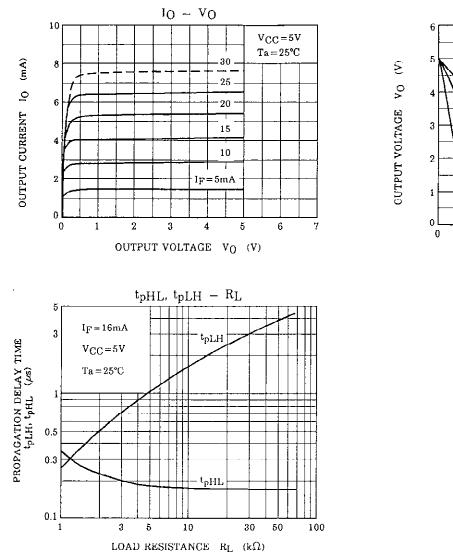

Electrical Characteristics (Ta = 25°C)

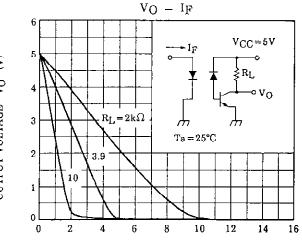
CHARACTERISTIC		SYMBOL	TEST CONDITION		MIN.	TYP.	MX.	UNIT
LED	Forward Voltage	V _F	I _F = 16mA		_	1.65	1.85	V
	Forward Voltage Temperature Coefficient	ΔV _F /ΔTa	I _F = 16mA		_	-2	-	mV/°C
	Reverse Current	I _R	V _R = 5V	_	-	10	μA	
	Capacitance Between Terminal	C _T	V _F = 0, f = 1MHz		_	45	-	pF
DETECTOR	I _{OH(1)}		$I_{\rm F} = 0{\rm mA}, V_{\rm CC} = V_{\rm O} = 5.5{\rm V}$		_	3	500	nA
	High Level Output Current	I _{OH(2)}	$I_{\rm F} = 0$ mA, $V_{\rm CC} = V_{\rm O} = 15$ V		_	_	5	μA
		I _{OH}	$I_F = 0mA, V_{CC} = V_O$ Ta = 70°C	-	-	250	μA	
	High Level Supply Voltage	I _{CCH}	I _F = 0mA, V _{CC} = 15\	_	0.01	1	μA	
	Current Transfer Ratio	I _O /I _F	$I_{F} = 16mA$ $V_{CC} = 4.5V$ $V_{O} = 0.4V$	Ta = 25°C	10	30	-	%
				Rank: 0	19	30	-	
				Ta = 0~70°C	5	-	-	
				Rank: 0	15	-	-	
COUPLED	Low Level Output Voltage	V _{OL}	$I_F = 16mA, V_{CC} = 4.5V,$ $I_O = 1.1mA$ (Rank 0: $I_O = 2.4mA$)		-	-	0.4	V
	Isolation Resistance	R _S	$R.H. \leq 60\%, V_S = 500 V_{DC} (\text{Note 7})$		_	10 ¹²	-	Ω
	Capacitance Between Input to Output	CS	V _S = 0, f = 1MHz (Note 7)		_	0.8	_	pF


Switching Characteristics (Ta = 25° C)


CHARACTERISTIC	SYMBOL	TEST CIRCUIT	TEST CONDITION		MIN.	TYP.	MX.	UNIT
Propagation Delay Time	t _{pHL}	- 1	$I_F = 0 \rightarrow 16 \text{mA}, V_{CC} = 5 \text{V},$		_	0.2	0.8	
(H→L)			$R_L = 4.1 k\Omega$	Rank 0: $R_L = 1.9k\Omega$	_	0.3	0.8	μs
Propagation Delay Time	t _{pLH}		$I_F = 16 \rightarrow 0 \text{mA}, V_{CC} = 5 \text{V},$		_	1.0	2.0	
(L→H)			$R_L = 4.1 k\Omega$	Rank 0: $R_L = 1.9k\Omega$	_	0.5	1.2	μs
Common Mode Transient Immunity at Logic High Output (Note 8)	C _{MH}	2	$I_{F} = 0mA, V_{CM} = 200Vp-p$ $R_{L} = 4.1k\Omega$ $(Rank 0: R_{L} = 1.9k\Omega)$		_	400	-	V/µs
Common Mode Transient Immunity at Logic Low Output (Note 8)	C _{ML}		$I_{F} = 16\text{mA}, V_{CM} = 200\text{Vp-p}$ $R_{L} = 4.1\text{k}\Omega$ $(\text{Rank 0: } R_{L} = 1.9\text{k}\Omega)$		_	-1000	_	V/µs


TEST CIRCUIT 1 : Switching Time Test Circuit


TEST CIRCUIT 2 : Common Mode Noise Immunity Test Circuit



 $\Delta V_{\rm F} / \Delta T_{\rm a} = I_{\rm F}$

FORWARD CURRENT IF (mA)