TOSHIBA Bipolar Linear Integrated Circuit Silicon Monolithic

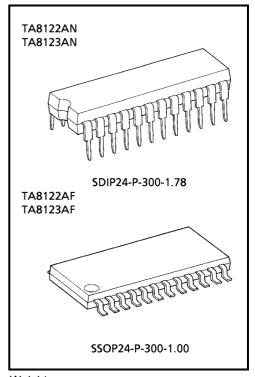
TA8122AN, TA8122AF, TA8123AN, TA8123AF

3V AV / FM 1Chip Tuner IC

TA8122AN / AF and TA8123AN / AF are the AM / FM 1chip tuner ICs, which are designed for portable radios and 3V headphone radios.

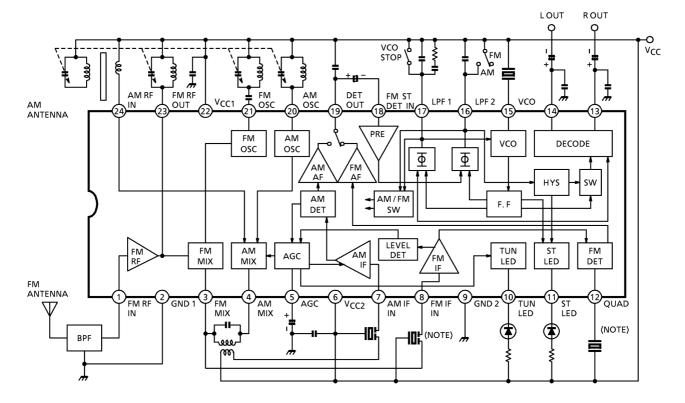
Features

- Built-in
 - FM F / E, AM / FM IF and FM ST DET
- AM detector coil, FM IFT and IF coupling condenser are not needed.
- For adopting ceramic discriminator and ceramic resonator, it is not necessary to adjust the FM quad detector Circuit and FM ST DET VCO circuit.
- S curve characteristics of FM detection output in TA8122AN / AF and TA8123AN / AF are reverse to each other.


TA8122AN / AF: Reverse characteristic TA8123AN / AF: Normal characteristic

· Compact pakage

TA8122AN / 23AN: Shrink DIP 24 pin (1.78mm pitch) TA8122AF / 23AF: Mini flat package 24 pin


• Operating supply voltage range

 $V_{CC} = 1.8 \sim 7.0 V (Ta = 25 ^{\circ}C)$

Weight SDIP24-P-300-1.78: 1.2g (typ.) SSOP24-P-300-1.00: 0.31g (typ.)

Block Diagram

(Note)

We recommend the kit of the ceramic filter and the ceramic resonator which are shown in the table as below.

It is necessary to meet the center frequency of the ceramic filter and the ceramic resonator, otherwise there are some cases that the characteristics get worse.

Kit Name	Combination						
Kit Name	Ceramic Filter	Q'ty	Ceramic Resonator	Q'ty			
KMFC403-Z	SFE10.7MA5-Z	2	CDA10.7MG16-Z	1			
KMFC411-Z	SFE10.7MA5-Z	1	CDA10.7MG16-Z	1			
KMFC422-Z	SFE10.7MA2-Z	2	CDA10.7MG16-Z	1			
KMFC435-Z	SFE10.7MA5L-Z	2	CDA10.7MG16-Z	1			
KMFC445-Z	SFE10.7MA5L-Z	1	CDA10.7MG16-Z	1			

Manufacturer: MURATA MFG. CO., LTD

Explanation Of Terminals

Pin	Characteristic	Internal Circuit	DC Vol	tage (V) Signal)
No.			ΑM	FM
1	FM-RF in	FM-RF OUT (23) (33) (34) (34) (35) (40) (52) (60) (72) (73) (74) (74) (75) (74) (75) (0	0.7
2	GND1 (GND for RF stage)	_	0	0
3	FM mix	V _{CC1} 22 3 MIX 270Ω GND1 2	2.3	1.8
4	AM mix	V _{CC1} (2) MIX GND1 (2)	2.3	1.8
5	AGC (AM AGC)	IF AGC S RF AGC GND2 9	0	0
6	V _{CC2} (V _{CC} for IF / MPX stage)	_	3.0	3.0

Pin No.	Characteristic	Internal Circuit	DC Voli (AT No AM	age (V) Signal) FM
7	AM IF in	V _{CC2} 6 C C C C C C C C C C C C C C C C C C	3.0	3.0
8	FM IF in	VCC2 6 G	3.0	3.0
9	GND2 (GND for IF / MPX stage)	_	0	0
10	TUN LED (tuning LED)	V _{CC2} 6 10 10 GND2 9	_	_
11	ST LED (stereo LED)	19kHz————————————————————————————————————	_	_
12	QUAD (FM QUAD. Detector)	VCC2 6 12 GND2 9	2.4	2.1

Pin No.	Characteristic	Internal Circuit	(AT No	tage (V) Signal)
13 14	R-out (R-ch output) L-out (L-ch output)	V _{CC2} 6	1.0	1.0
15	vco	V _{CC2} 6 (5)	2.5	2.5 (VCO stop mode)
16	LPF2 • LPF terminal for synchronous detector • Bias terminal for AM / FM SW circuit V ₁₆ = V _{CC} →AM V ₁₆ = open→FM	GND2 9	3.0	2.2 (VCO stop mode 2.7)
17	LPF1 LPF terminal for phase detector VCO stop terminal V ₁₇ = V _{CC} →VCO stop	GND2 9	2.7	2.2
18	FM ST DET in	(B) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	0.7	0.7

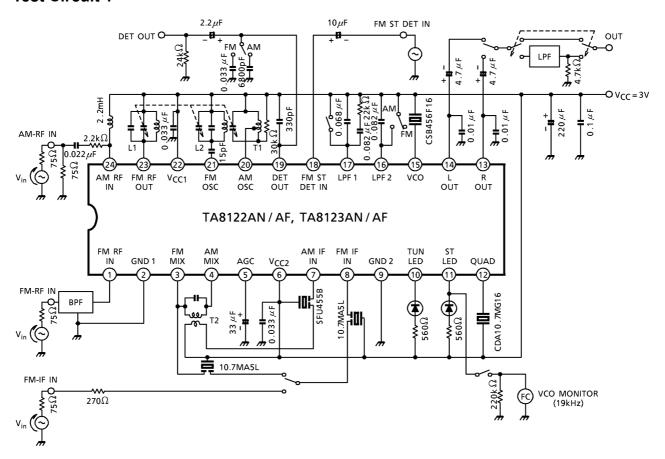
Pin	Characteristic	Internal Circuit	DC Vol	tage (V) Signal)
No.			ÀΜ	FM
19	DET out	VCC2 6 AM 0 FM 19 © LOW→FM, HIGH→AM © LOW→AM, HIGH→FM	1.5	1.2
20	AM OSC	VCC1 22 MIX GND1 2	3.0	3.0
21	FM OSC	Vcc1 (2) (2) MIX - II GND1 (2)	3.0	3.0
22	V _{CC1} (V _{CC} for RF stage)	_	3.0	3.0
23	FM RF out	cf. Pin(1)	3.0	3.0
24	AM RF in	V _{CC1} 22 24 GND2 2	3.0	3.0

Maximum Ratings (Ta = 25°C)

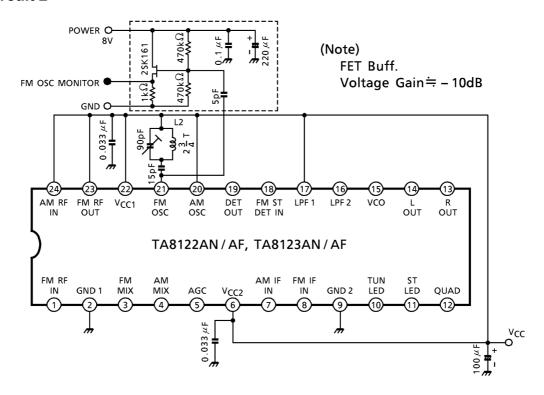
Chara	acteristic	Symbol	Rating	Unit	
Supply voltage		V _{CC}	8	V	
LED current		I _{LED}	10	mA	
LED voltage		V_{LED}	8	V	
Power	TA8122AN / 23AN	P _D (Note)	1200	mW	
dissipation	TA8122AF / 23AF	FD (Note)	400	11177	
Operating temper	ature	T _{opr}	-25~75	°C	
Storage temperat	ure	T _{stg}	-55~150	°C	

Note: Derated above 25°C in the proportion of 9.6mW / °C for TA8122AN / 23AN and of 3.2mW / °C for TA8122AF / 23AF

Electrical Characteristics Unless Otherwise Specified,


Ta = 25°C, V_{CC} = 3V, F / E: f = 83MHz, f_m = 1kHz FM IF: f = 10.7MHz, Δf = ±22.5kHz, f_m = 1kHz AM: f = 1MHz, MOD = 30%, f_m = 1kHz FM ST DET: f_m = 1kHz

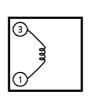
	Characteristic	Symbol	Test Cir– cuit	Test Condition	Min.	Тур.	Max.	Unit	
Supply current		I _{CC (FM)}	1	V _{in} = 0, FM mode	_	14.0	18.5	- mA	
Sup	ppry current	I _{CC} (AM)	1	V _{in} = 0, AM mode	_	6.0	8.3	IIIA	
	Input limiting voltage	V _{in (lim.)}	1	-3dB limiting	_	14.0	_	dBµV EMF	
F/E	Local OSC voltage	Vosc	2	f _{OSC} = 72.3MHz	70	105	140	mV_{rms}	
	Input limiting voltage	V _{in (lim.)} IF	1	-3dB limiting	39	44	49	dBµV EMF	
	Recovered output voltage	V _{OD}	1	V _{in} = 80dBμV EMF	55	80	110	mV _{rms}	
	Signal to noise ratio	S/N	1	V _{in} = 80dBµV EMF	_	70	_	dB	
FM in	Total harmonic distortion	THD	1	1 V _{in} = 80dBμV EMF		0.4	_	%	
	AM rejection ratio	AMR	1	V _{in} = 80dBµV EMF	_	50	_	dB	
	LED on sensitivity	VL	1	I _L = 1mA	43	48	53	dBµV EMF	
	Gain	G _V	1	V _{in} = 23dBμV EMF	20	40	80	mV_{rms}	
	Recovered output voltage	V _{OD}	1	V _{in} = 60dBμV EMF	50	60	100	mV _{rms}	
AM	Signal to noise ratio	S/N	1	V _{in} = 60dBμV EMF	_	44	_	dB	
1	Total harmonic destortion	THD	1	V _{in} = 60dBμV EMF	_	1.0	_	%	
	LED on sensitivity	VL	1	I _L = 1mA	19	24	29	dBµV EMF	
Din	(19) output resistance	Dia	1	FM mode	_	0.75	_	kO	
PIN((19) output resistance	R ₁₉	'	AM mode	_	12.5	_	kΩ	


	Characteristic		Symbol	Test Cir– cuit	Test Condition		Min.	Тур.	Max.	Unit
	Input resistanc	е	R _{IN}	_	-	_	_	24	_	kΩ
	Output resistar	nce	R _{OUT}	_	-	_	_	5	_	K12
	Max. Composii input voltage	te signal	V _{in (MAX.)} STEREO	1	L + R = 90%, P = f _m = 1kHz, THD		_	350	_	mV _{rms}
					L+R=	f _m = 100Hz	_	42	_	
	Separation		Sep.	1	135mV _{rms}	f _m = 1kHz	35	42	_	dB
					P = 15mV _{rms}	f _m = 10kHz	_	42		1
DET	Total harmonic	Monaural	THD (MONAURAL)	1	V _{in} = 150mV _{rms}		_	0.2	_	- %
FM ST D	distortion	Stereo	THD (STEREO)	'	L + R = 135mV _{rm} P = 15mV _{rms}	ns,	_	0.2	_	70
ш	Voltage gain		G _{V (FM ST DET)}	1	V _{in} = 150mV _{rms}		-5	-3	-1	dB
	Channel balan	се	C.B.	1	V _{in} = 150mV _{rms}		-2	0	2	uБ
	Stereo LED	On	V _{L (ON)}	1	Dilot input		_	8	15	m\/
	sensitivity	Off	V _{L (OFF)}	'	Filot iliput	Pilot input		6	_	mV _{rms}
	Stereo LED hysteresis V _H		V _H	1	To LED turn off f LED turn on	To LED turn off from LED turn on		2	_	mV _{rms}
	Capture range		C.R.	1	P = 15mV _{rms}		_	1.3	_	%
	Signal to noise	ratio	S/N	1	V _{in} = 150mV _{rms}		_	70	_	dB

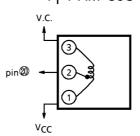
Test Circuit 1

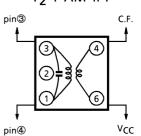
Test Circuit 2

Coil Data


Cail Na	Test	L	Co	_			Turns			Wire	Deference	
Coil No.	Freq.	(µH)	(pF)	Qo	1–2	2–3	1–3	1–4	4–6	(mmφ)	Reference	
L ₁ FM RF	100MHz	_	ı	100	ı	ı	_	$2\frac{1}{2}$		0.5UEW	(S) 53T-037-202	
L ₂ FM OSC	100MHz	_	-	100		-	$2\frac{3}{4}$			0.5UEW	(S) 0258–244	
T ₁ AM OSC	796kHz	288	_	115	13	73	_	_	_	0.08UEW	(S) 4147-1356-038	
T ₂ AM IFT	455kHz	_	180	120	_	_	180	_	15	0.08UEW	(S) 2150-2162-165	

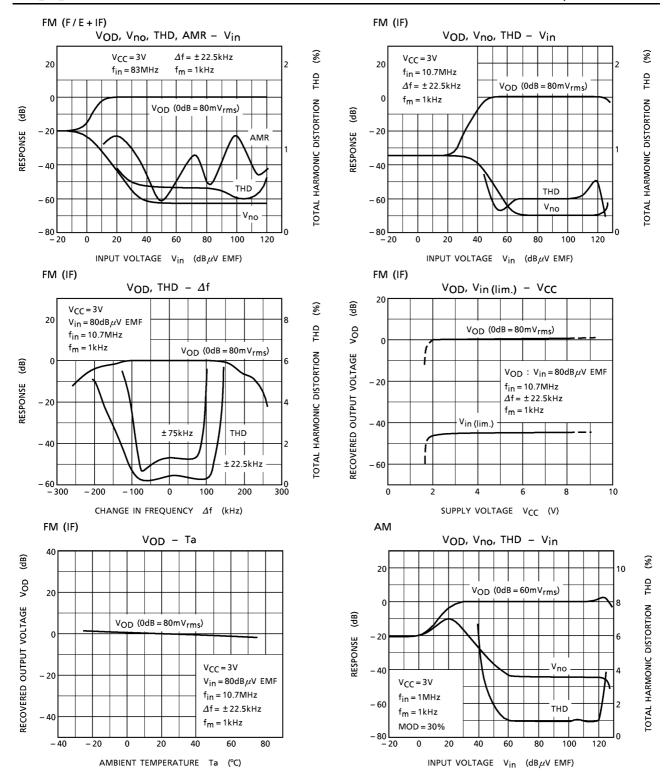
(S): SUMIDA ELECTRIC CO., LED.

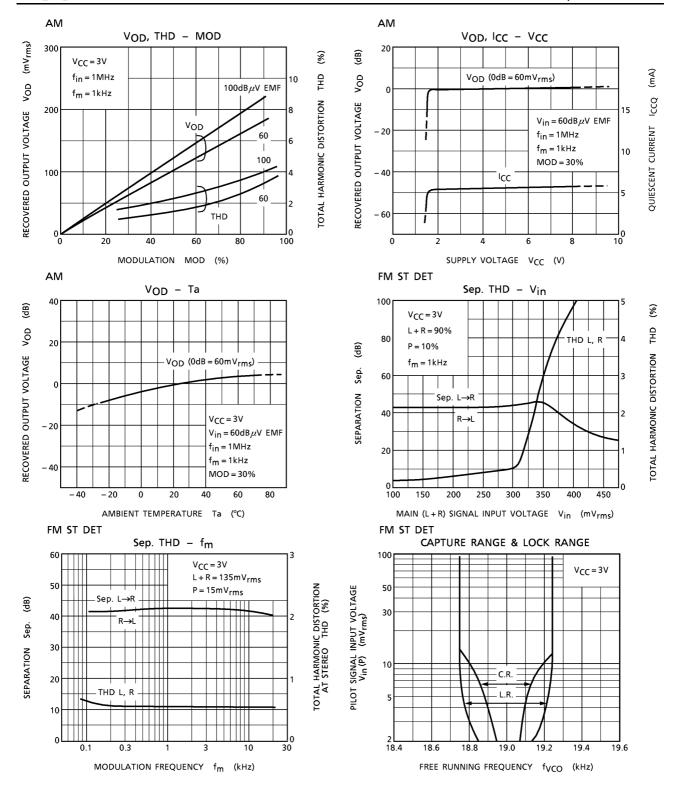


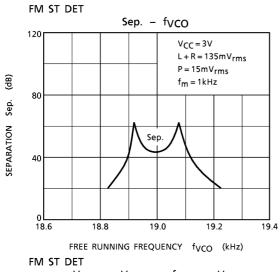

L₂: FM OSC

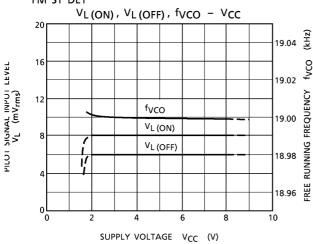
T₁: AM OSC

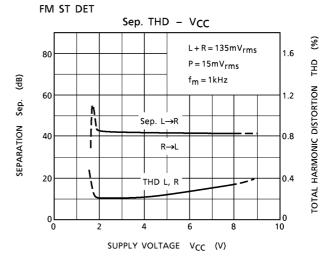
T₂: AM IFT

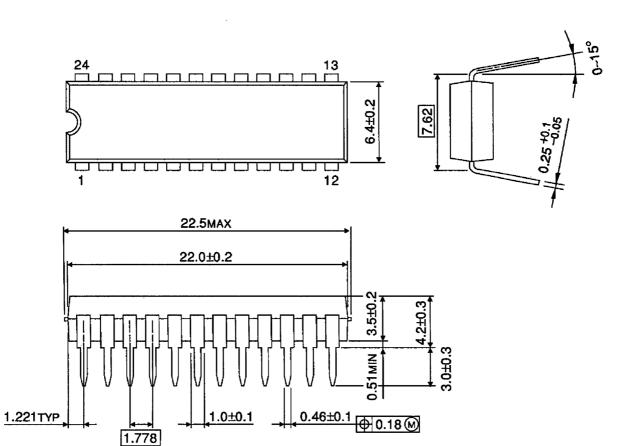



FM Detection Circuit


For the FM detection circuit, detection coil is able to use instead of ceramic discriminator. Recommended circuit and recommended coil are as follows. In this case, please take care that V_{in} (lim.) falls a little.

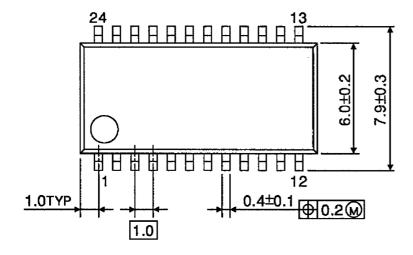


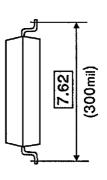

Test	Co	0		Tu	rns		Wire	REF
Frequency	(pF)	\mathcal{Q}_0	1–2	2–3	1–3	4–6	(mmφ)	KEF
10.7MHz	100	100			12		0.12UEW	SUMIDA ELECTRIC CO., LTD 2153–4095–189 or equivalent

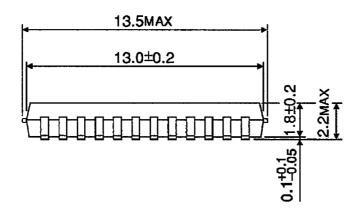


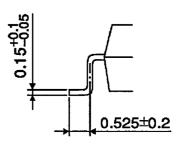
Unit: mm

Package Dimensions


SDIP24-P-300-1.78




Weight: 1.2g (typ.)


Package Dimensions

SSOP24-P-300-1.00 Unit: mm

Weight: 0.31g (typ.)

RESTRICTIONS ON PRODUCT USE

000707EBA

- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.