INTRODUCTION

The S1A2221A01 is a monolithic integrated circuit for car stereos,which possesses 2-channel low noise amplifiers and a regulated power supply.

FEATURES

- Suitable for a car stereo
- Low noise amplifier
- Voltage regulator included
- Good ripple rejection
- High channel separation (65dB Typ)
- Minimum number of external parts required

ORDERING INFORMATION

Device	Package	Operating Temperature
S1A2221A01-I0U0	8–SIP	−20°C — +70°C

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (Ta = 25°C)

Characteristic	Symbol	Value	Unit
Supply Voltage	V _{CC}	18	V
Power Dissipation	P _O	200	mW
Operating Temperature	T _{OPR}	- 20 - +70	°C
Storage Temperature	T _{STG}	- 40 - +125	°C

ELECTRICAL CHARACTERISTICS

(T = 25°C, V_{CC} = 12V, R_L = 10K, f = 1kHz, NAB, unless otherwise specified)

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Quiescent Circuit Current	I _{CCQ}	V ₁ = 0	-	6.0	9.0	mA
Open Loop Voltage Gain	G _{VO}	-	65	80	-	dB
Closed Loop Voltage Gain	G _{VE}	V _O = 0.5 V	33	35	37	dB
Output Voltage	V _O	THD = 1%	0.6	1.0	_	V
Total Harmonic Distortion	THD	V _O = 0.5 V	-	0.1	0.3	%
Input Resistance	R _I	-	-	150	_	KΩ
Equivalent Input Noise Voltage	V _{NI}	R _G = 2.2kΩ BW (-3dB) =15Hz - 30kHz	_	1.0	2.0	μV
Cross Talk	СТ	$R_{G} = 2.2k\Omega$	50	65	_	dB

TEST CIRCUIT

APPLICATION INFORMATION

External Components (Refer to test circuits)

 C_1 (C_{10}): Noise filter

These capacitors prevent radio interference in strong electric fields. The recommended value is 1000 pF.

C2 (C8):Input coupling capacitor

The recommended value is 10μ F. If made too small, the low frequency characteristics will change for the worse, but too large a value will increase the rising time when power is applied.

C1 (C9):Negative feedback capacitor

The lower cut-off frequency depends on the value of these capacitors and is determined as follows:

 $C_3 (C_8) = \frac{1}{2\pi f_L \bullet R1}$

fL: Low cut-off frequency

If the value of these capacitors is made larger, the starting time of the amplifier is delayed further.

$C_5(C_6)$: Output coupling capacitor

The recommended value is $10 \mu F.$

R2, R3, C7 (R4, R5, C4): Equalizer network

The time constants of standard NAB characteristic are as follows.

	Tape speed	9.5 cm/sec	4.75 cm/sec
T2	$C_7 (R_2 + R_3)$	3180 µsec	1590 µsec
T1	R ₂ , C ₇	90 µsec	120 µsec

R1 (R6): Feedback component

The closed loop gain is determined approximately by the following relationship.

Choose R₂, R₃, (DC resistance of NAB element) as 100 K approximately.

NOTES

