

10W MONO CLASS-D AMPLIFIER

PRODUCT PREVIEW

- 10W OUTPUT POWER: $R_L = 8\Omega/4\Omega$; THD = 10%
- HIGH EFFICIENCY
- NO HEATSINK
- SPLIT SUPPLY
- OVERVOLTAGE PROTECTION
- ST-BY AND MUTE FEATURES
- SHORT CIRCUIT PROTECTION
- THERMAL OVERLOAD PROTECTION

DESCRIPTION

The TDA7480 is an audio class-D amplifier assembled in Power DIP package specially designed for high efficiency applications mainly for TV and Home Stereo sets.

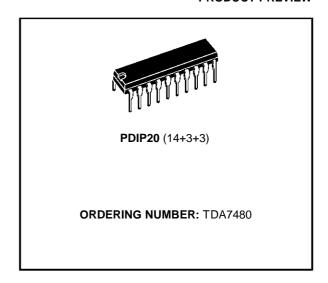
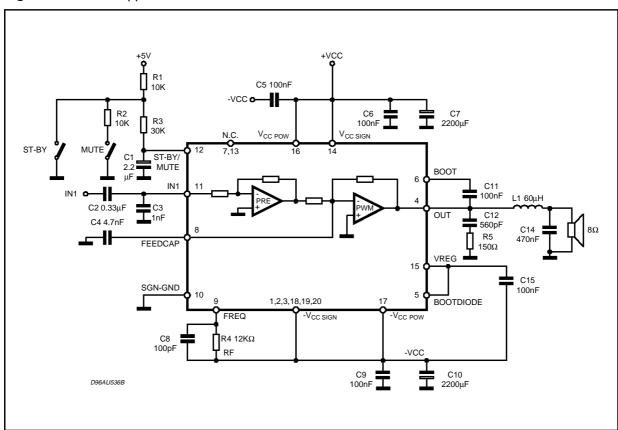
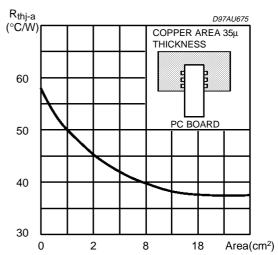



Figure 1: Test and Application Circuit.

June 1997 1/6


ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vcc	DC Supply Voltage	±20	V
T_{stg}, T_{j}	Storage and Junction Temperature	-40 to 150	°C
V_{RFmax}	Maximum Voltage Across RF	8	V
T _{op}	Operating Temperature Range	0 to 70	°C

PIN CONNECTION (Top view)

-V_{CC SIGN} -V_{CC SIGN} 20 -V_{CC SIGN} -V_{CC SIGN} □ 19 2 -V_{CC SIGN} 18 ☐ -V_{CC SIGN} OUT 🗖 17 ☐ -V_{CC POW} BOOTDIODE 16 → V_{CC POW} воот 🗖 ☐ VREG 15 N.C. 🔲 7 14 → V_{CC SIGN} FEEDCAP 13 N.C. 12 STBY/MUTE FREQ SGN-GND IN 11 D96AU537A

Rth with "on board" Square Heatsink vs. copper area.

THERMAL DATA

Symbol	Parameter	Value	Unit
R _{th j-amb}	Thermal Resistance Junction to ambient	80	°C/W
R _{th j-pin}	Thermal Resistance Junction to Pin Max.	12	°C/W

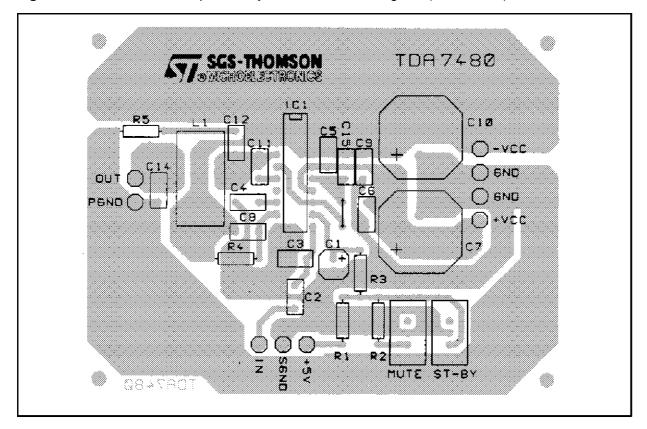
PIN FUNCTIONS

N.	Name	Function		
1	-V _{CC} SIGN	SIGNAL NEGATIVE SUPPLY.		
2	-V _{CC} SIGN	SIGNAL NEGATIVE SUPPLY.		
3	-V _{CC} SIGN	SIGNAL NEGATIVE SUPPLY.		
4	OUT	PWM OUTPUT		
5	BOOTDIODE	BOOTSTRAP DIODE ANODE		
6	BOOT	BOOTSTRAP CAPACITOR		
7	NC	NOT CONNECTED		
8	FEEDCAP	FEEDBACK INTEGRATING CAPACITANCE		
9	FREQUENCY	SETTING FREQUENCY RESISTOR		
10	SGN-GND	SIGNAL GROUND		
11	IN	INPUT		
12	ST-BY-MUTE	CONTROL STATE PIN		
13	NC	NOT CONNECTED		
14	+V _{CC} SIGN	POSITIVE SIGNAL SUPPLY		
15	VREG	10V INTERNAL REGULATOR		
16	+V _{CC} POW	POSITIVE POWER SUPPLY		
17	-V _{CC} POW	NEGATIVE POWER SUPPLY		
18	-V _{CC} SIGN	NEGATIVE SIGNAL SUPPLY		
19	-V _{CC} SIGN	NEGATIVE SIGNAL SUPPLY		
20	-V _{CC} SIGN	NEGATIVE SIGNAL SUPPLY		

ELECTRICAL CHARACTERISTICS (Refer to the test circuit, $V_{CC} = \pm 13V$; $R_L = 8\Omega$; $R_S = 50\Omega$; $R_{f1} = 12K\Omega$; Demod.. filter $L = 60\mu H$, C = 470nF; f = 1KHz; $T_{amb} = 25^{\circ}C$ unless otherwise specified.)

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Unit
Vs	Supply Range		±10		±13	V
I_q	Total Quiescent Current	R _L = ∞				mΑ
Vos	Output Offset Voltage -		-50		+50	mV
Po	Output Power	THD = 10% THD = 1%		10 6.5		W W
		$R_L = 4\Omega \ \ V_{CC} = \pm 10V$ $THD = 10\%$ $THD = 1\%$		10 6.5		W W
P _d (*)	Dissipated Power at 1W Output Power	$V_{CC} = \pm 13V; R_L = 8\Omega;$ $R_f = 12K\Omega P_O = 1W$		1		W
P _{DMAX}	Maximum Dissipated Power	$\begin{split} V_{CC} = \pm 13 V; R_L = 8 \Omega; R_f = 12 K \Omega \\ P_O = 10 W \text{ THD } 10 \% \\ R_{th-j-amb} = 38 ^{\circ}\text{C/W (Area } 12 \text{cm}^2) \end{split}$				W
η	Efficiency $\equiv \frac{P_O}{P_O + P_D} \equiv \frac{P_O}{P_I} (**)$	V 143V(D 00 D 43V0 05		85		%
THD	Total Harmonic Distortion	$R_L = 8\Omega; P_O = 0.5W$		0.1		%
I _{max}	Overcurrent Protection Threshold	$R_L = 0$	3.5	5		А
Tj	Thermal Shut-down Junction Temperature			150		°C
G_V	Closed Loop Gain			30		dB
e _N	Total Input Noise	A Curve f = 20Hz to 22KHz		7 12		μV μV
Ri	Input Resistance			30		kΩ
SVR	Supply Voltage Rejection	$f = 100Hz; V_r = 0.5$		60		dB
T _r , T _f	Rising and Falling Time			50		ns
R _{DSON}	Power Transistor on Resistance			0.4		Ω
F _{SW}	Switching Frequency Range		100		200	KHz
B _F	Zero Signal Frequency Constant (***)			1.4x10 ⁹		HzΩ
R _F	Frequency Controller Resistor Range (****)		7	12	14	ΚΩ
	MUTE	& STAND-BY FUNCTIONS				
V_{ST-BY}	Stand-by range		0		0.7	V
V _{MUTE}	Mute Range		1.7		2.5	V
V_{PLAY}	Play Range		4		5	V
A _{MUTE}	Mute Attenuation			60		dB
I _{qST-BY}	Quiescent Current @ Stand-by			3		mA

^{*:} The output average power when the amplifier is playing music can be considered roughly 1/10 of the maximum output power. So it is usefull consider the disssipated power in this condition for thermal dimensioning.



^{**:} Po = measured across the load using the following inductor: COIL 58120 MPPA2 (magnetics) TURNS: 28 \oslash 1mm TURNS: 28 \oslash 1mm

^{***:} The zero-signal switching frequency can be obtained using the following expression: $F_{SW} = B_F/R_F$

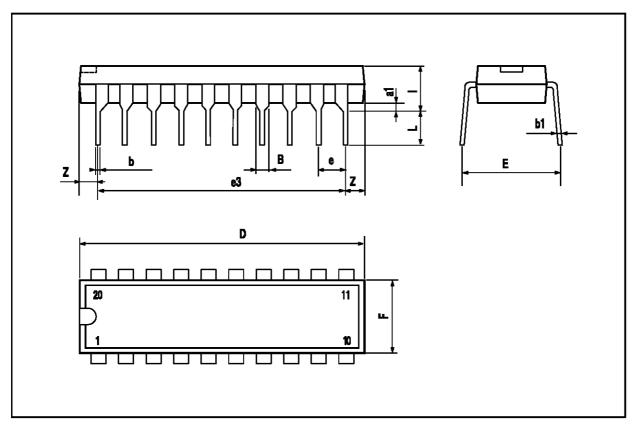

^{****:} The maximum value of R_F is related to the maximum possible value for the voltage drop on R_F itself.

Figure 2: P.C. Board and Component Layout of the Circuit of Figure 1 (1.25:1 scale).

POWERDIP20 PACKAGE MECHANICAL DATA

DIM.	mm			inch			
Dim.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
a1	0.51			0.020			
В	0.85		1.40	0.033		0.055	
b		0.50			0.020		
b1	0.38		0.50	0.015		0.020	
D			24.80			0.976	
E		8.80			0.346		
е		2.54			0.100		
e3		22.86			0.900		
F			7.10			0.280	
I			5.10			0.201	
L		3.30			0.130		
Z			1.27			0.050	

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.

 $\, \odot \,$ 1997 SGS-THOMSON Microelectronics – Printed in Italy – All Rights Reserved

SGS-THOMSON Microelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

