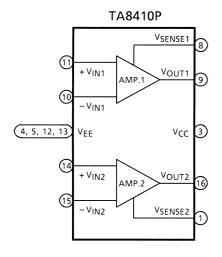
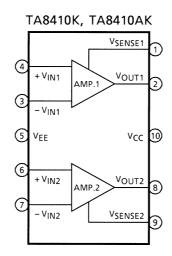
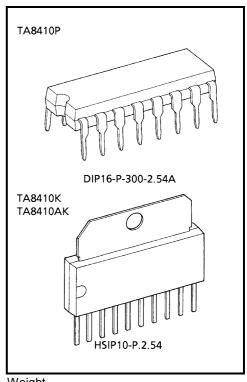
TOSHIBA BIPOLAR LINEAR INTEGRATED CIRCUIT SILICON MONOLITHIC

TA8410P,TA8410K,TA8410AK


DUAL POWER OPERATIONAL AMPLIFIER


The TA8410 series are a dual power operational amplifier. It is intended for use especially DC MOTOR positioning system applications such as Arm Driver (for Audiodisk Players), head or voice coil motor drivers (for Floppy and Hard Disk Drivers) and any other power driver applications.


FEATURES

- Built-in over current protector
- Few external parts required
- Output current up to 600 mA (AVE)
- Package TA8410P : DIP16
 TA8410K / AK: HSIP 10

BLOCK DIAGRAM

Weight

DIP16-P-300-2.54A : 1.0 g (Typ.) HSIP10-P-2.54 : 3.0 g (Typ.)

980910EBA1

- TOSHIBA is continually working to improve the quality and the reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to observe standards of safety, and to avoid situations in which a malfunction or failure of a TOSHIBA product could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent products specifications. Also, please keep in mind the precautions and conditions set forth in the TOSHIBA Semiconductor Reliability Handbook.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.
- The information contained herein is subject to change without notice.

PIN FUNCTION

PIN No.		SYMBOL	FUNCTIONAL DESCRIPTION			
1	(9)	V _{SENSE2}	Amp.2 output current sensing terminal.			
2	(-)	NC	Non connection			
3	(10)	V _{CC}	Possitive-side voltage supply terminal.			
4	(5)	V _{EE}	Negative-side voltage supply terminal.			
5	(-)	V _{EE}				
6	(-)	NC	Non connection			
7	(-)	NC	Non connection			
8	(1)	V _{SENSE1}	Amp.1 output current sensing terminal.			
9	(2)	V _{OUT1}	Amp.1 output terminal.			
10	(3)	-V _{IN1}	Amp.1 input terminal (-)			
11	(4)	+V _{IN1}	Amp.1 input terminal (+)			
12	(-)	V _{EE}	Nogativa-sida valtaga supply terminal			
13	(-)	V _{EE}	Negative-side voltage supply terminal.			
14	(6)	+V _{IN2}	Amp.2 input terminal (+)			
15	(7)	-V _{IN2}	Amp.2 input terminal (-)			
16	(8)	V _{OUT2}	Amp.2 output terminal.			

(): TA8410K, TA8410AK

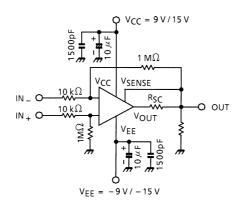
MAXIMUM RATINGS (Ta = 25°C)

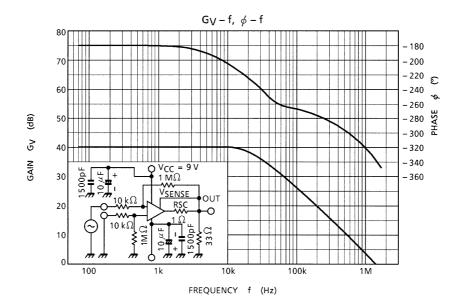
CHARACTE	RISTIC	SYMBOL	RATING	UNIT	
	TA8410P		+9		
Supply Voltage	TA8410K	V _{CC} V _{EE}	79	V	
	TA8410AK		+15	<u>'</u>	
Output Current		I _{O (AVE)}	0.6	Α	
	TA8410P		1.4 (Note 1)	W	
Power Dissipation	TA8410K	P_{D}	1.4 (Note 2)		
	TA8410AK		12.5 (Note 3)		
Operating Temperatur	e	T _{opr}	-30~75	°C	
Storage Temperature		T _{stg}	-55~150	°C	

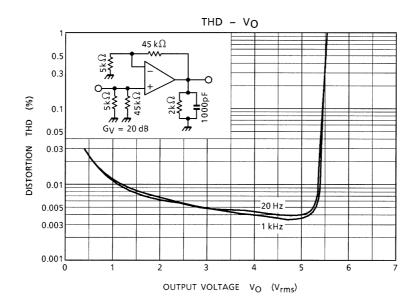
Note 1: No heat sink

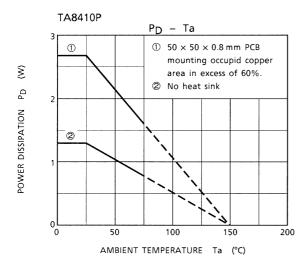
Note 2: $60 \times 30 \times 1.6$ mm PCB mounting occupied copper area in excess of 50%.

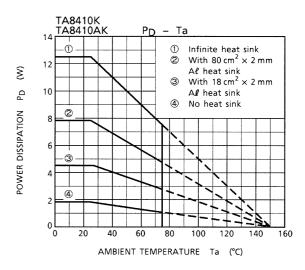
Note 3: Tc = 25°C

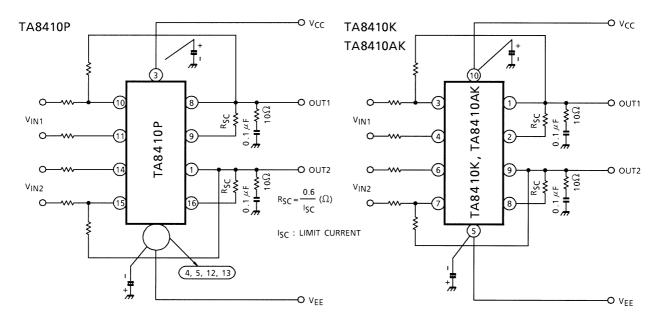

TA8410P/K/AK

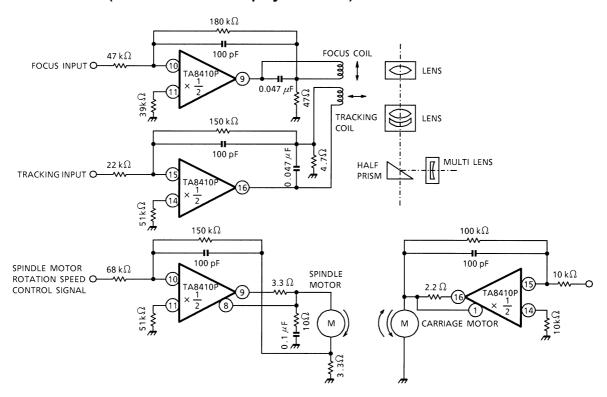

ELECTRICAL CHARACTERISTICS


Unless otherwise specified, Ta = 25°C, (TA8410P / K, V_{CC} = 9 V, V_{EE} = -9 V) (TA8410AK, V_{CC} = 15 V, V_{EE} = -15 V)


CHARACTERISTIC			SYMBOL	TEST CIR- CUIT	TEST CONDITION	MIN	TYP.	MAX	UNIT	
Quiescent Current			Icc	_	_	_	7	18	mA	
Input Off Set Current			I _{IO}	_	_	_	0	100	nA	
Input Bias Current			ΙĮ	_	_	_	100	700	nA	
Input Off Set Voltage			V _{IO}	_	_	_	0	6	mV	
Output			Upper	V _{OH-1}	_	R _L = ∞	7.4	7.6	_	. v
	TA84	10P		V _{OH-2}	_	I _O = 0.6 A	5.5	6.2	_	
	TA84	10K	Lower	V _{OL-1}	_	R _L = ∞	7.4	7.7	_	
				V _{OL-2}	_	I _O = 0.6 A	5.6	6.2	_	
Voltage Swing			Upper	V _{OH-1}	_	R _L = ∞	13.0	13.6	_	
	TA84	10K		V _{OH-2}	_	I _O = 0.6 A	11.0	11.6	_	
	1704	IUK	Lower	V _{OL-1}	_	R _L = ∞	13.0	13.6	_	
				V _{OL-2}	_	I _O = 0.6 A	11.0	11.7	_	
Open Loop Gain			G _{VO}	_	_	_	100	_	dB	
Mode Voltage TAS		TA84 TA84		CMR	_	G _V = 40 dB	±8.0	±8.3	_	V
		TA8410AK		CMR	_	G _V = 40 dB	14.0	±14.3	_	
Common Mode Rejection Ratio			CMRR	_	_	70	82	_	dB	
Supply Voltage Rejection Ratio			SVRR	_	_	76	90	_	dB	
Unity Gain Cross Frequency			f _T	_	Open loop	_	1.0	_	MHz	
Slew Rate			SR	_	R _L = 33 Ω	_	0.5	_	V / µs	
Short Circuit Current			I _{SC}	_	R _{SC} = 1.0 Ω	_	0.6	_	Α	
Cross Talk			C _T	_	$R_L = 33 \Omega, V_{OUT} = 1 V_{p-p}$	_	60	_	dB	

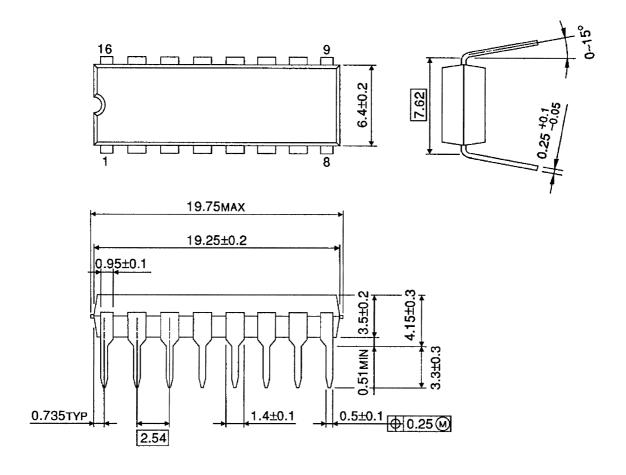

TEST CIRCUIT





APPLICATION CIRCUIT 1

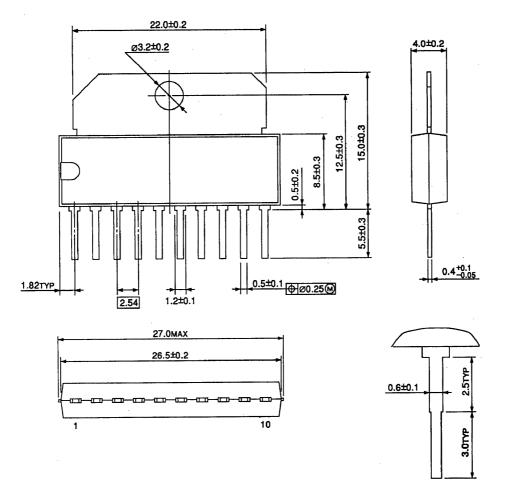
APPLICATION 2 (Drive circuit for CD player motors)



Note: Utmost care is necessary in the design of the output line, V_{CC} and V_{EE} line since IC may be destroyed due to short–circuit between outputs, air contamination fault, or fault by improper grounding.

OUTLINE DRAWING

DIP16-P-300-2.54A Unit: mm



Weight: 1.0 g (Typ.)

OUTLINE DRAWING

HSIP10-P-2.54 Unit: mm

Weight: 3.0 g (Typ.)