Hex D Flip-Flop

The LSTTL/MSI SN74LS174 is a high speed Hex D Flip-Flop. The device is used primarily as a 6-bit edge-triggered storage register. The information on the D inputs is transferred to storage during the LOW to HIGH clock transition. The device has a Master Reset to simultaneously clear all flip-flops. The LS174 is fabricated with the Schottky barrier diode process for high speed and is completely compatible with all ON Semiconductor TTL families.

- Edge-Triggered D-Type Inputs
- Buffered-Positive Edge-Triggered Clock
- Asynchronous Common Reset
- Input Clamp Diodes Limit High Speed Termination Effects

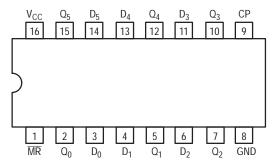
GUARANTEED OPERATING RANGES

Symbol	Parameter	Min	Тур	Мах	Unit
V _{CC}	Supply Voltage	4.75	5.0	5.25	V
T _A	Operating Ambient Temperature Range	0	25	70	°C
I _{OH}	H Output Current – High			-0.4	mA
I _{OL}	Output Current – Low			8.0	mA

ON Semiconductor

Formerly a Division of Motorola http://onsemi.com

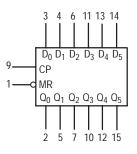
> LOW POWER SCHOTTKY



ORDERING INFORMATION

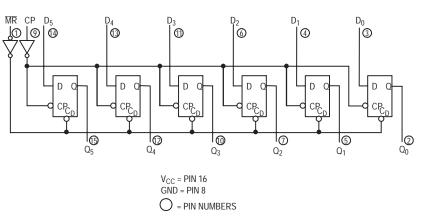
Device	Package	Shipping
SN74LS174N 16 Pin DIP		2000 Units/Box
SN74LS174D	16 Pin	2500/Tape & Reel

CONNECTION DIAGRAM DIP (TOP VIEW)


NOTE: The Flatpak version has the same pinouts (Connection Diagram) as the Dual In-Line Package.

		LOADING (Note a)	
PIN NAMES		HIGH	LOW
$D_0 - D_5$ CP \overline{MR} $Q_0 - Q_5$	Data Inputs Clock (Active HIGH Going Edge) Input Master Reset (Active LOW) Input Outputs	0.5 U.L. 0.5 U.L. 0.5 U.L. 10 U.L.	0.25 U.L. 0.25 U.L. 0.25 U.L. 5 U.L.

NOTES:


a) 1 TTL Unit Load (U.L.) = 40 µA HIGH/1.6 mA LOW.

LOGIC SYMBOL

V_{CC} = PIN 16 GND = PIN 8

LOGIC DIAGRAM

FUNCTIONAL DESCRIPTION

The LS174 consists of six edge-triggered D flip-flops with individual D inputs and Q outputs. The Clock (CP) and Master Reset (\overline{MR}) are common to all flip-flops.

Each D input's state is transferred to the corresponding flip-flop's output following the LOW to HIGH Clock (CP) transition.

A LOW input to the Master Reset ($\overline{\text{MR}}$) will force all outputs LOW independent of Clock or Data inputs. The LS174 is useful for applications where the true output only is required and the Clock and Master Reset are common to all storage elements.

TRUTH TABLE

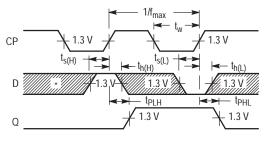
Inputs (t = n, MR = H)	Outputs (t = n+1) Note 1
D	Q
Н	Н
L	L

Note 1: t = n + 1 indicates conditions after next clock.

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

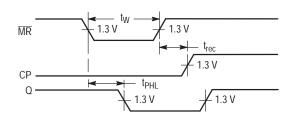
		Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
V _{IH}	Input HIGH Voltage	2.0			V	Guaranteed Input HIGH Voltage for All Inputs	
V _{IL}	Input LOW Voltage			0.8	V	Guaranteed Input LOW Voltage for All Inputs	
V _{IK}	Input Clamp Diode Voltage		-0.65	-1.5	V	$V_{CC} = MIN, I_{IN} = -18 \text{ mA}$	
V _{OH}	Output HIGH Voltage	2.7	3.5		V	V_{CC} = MIN, I _{OH} = MAX, V _{IN} = V _{IH} or V _{IL} per Truth Table	
			0.25	0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$
V _{OL}	Output LOW Voltage		0.35	0.5	V	I _{OL} = 8.0 mA	V _{IN} = V _{IL} or V _{IH} per Truth Table
				20	μΑ	$V_{CC} = MAX, V_{IN}$	= 2.7 V
lін	Input HIGH Current			0.1	mA	V _{CC} = MAX, V _{IN} = 7.0 V	
I _{IL}	Input LOW Current			-0.4	mA	$V_{CC} = MAX, V_{IN} = 0.4 V$	
I _{OS}	Short Circuit Current (Note 1)	-20		-100	mA	V _{CC} = MAX	
I _{CC}	Power Supply Current			26	mA	V _{CC} = MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.


AC CHARACTERISTICS ($T_A = 25^{\circ}C$)

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
f _{MAX}	Maximum Input Clock Frequency	30	40		MHz	
t _{PHL}	Propagation Delay, MR to Output		23	35	ns	V _{CC} = 5.0 V C _L = 15 pF
t _{PLH} t _{PHL}	Propagation Delay, Clock to Output		20 21	30 30	ns	

AC SETUP REQUIREMENTS (T_A = 25°C)

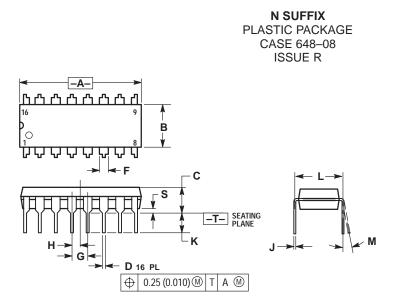

		Limits				
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
t _W	Clock or MR Pulse Width	20			ns	
ts	Data Setup Time	20			ns	V = 5 0 V
t _h	Data Hold Time	5.0			ns	$V_{CC} = 5.0 V$
t _{rec}	Recovery Time	25			ns	

AC WAVEFORMS

*The shaded areas indicate when the input is permitted to change for predictable output performance.

Figure 2. Master Reset to Output Delay, Master Reset Pulse Width, and Master Reset Recovery Time

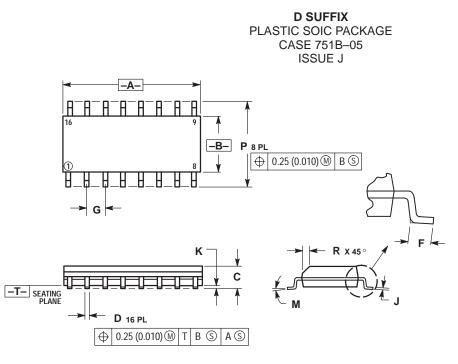
DEFINITIONS OF TERMS


SETUP TIME (t_s) — is defined as the minimum time required for the correct logic level to be present at the logic input prior to the clock transition from LOW to HIGH in order to be recognized and transferred to the outputs.

HOLD TIME (t_h) — is defined as the minimum time following the clock transition from LOW to HIGH that the logic level must be maintained at the input in order to ensure

continued recognition. A negative HOLD TIME indicates that the correct logic level may be released prior to the clock transition from LOW to HIGH and still be recognized.

RECOVERY TIME (t_{rec}) — is defined as the minimum time required between the end of the reset pulse and the clock transition from LOW to HIGH in order to recognize and transfer HIGH Data to the Q outputs.


PACKAGE DIMENSIONS

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL.

	INC	HES	MILLIN	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX		
Α	0.740	0.770	18.80	19.55		
В	0.250	0.270	6.35	6.85		
С	0.145	0.175	3.69	4.44		
D	0.015	0.021	0.39	0.53		
F	0.040	0.70	1.02	1.77		
G	0.100	BSC	2.54 BSC			
Н	0.050	BSC	1.27 BSC			
J	0.008	0.015	0.21	0.38		
К	0.110	0.130	2.80	3.30		
L	0.295	0.305	7.50	7.74		
Μ	0°	10 °	0 °	10 °		
S	0.020	0.040	0.51	1.01		

PACKAGE DIMENSIONS

NOTES:

- NOTES:
 DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
 MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
 DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	9.80	10.00	0.386	0.393
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.054	0.068
D	0.35	0.49	0.014	0.019
F	0.40	1.25	0.016	0.049
G	1.27	BSC	0.050) BSC
J	0.19	0.25	0.008	0.009
К	0.10	0.25	0.004	0.009
M	0 °	7°	0 °	7°
Р	5.80	6.20	0.229	0.244
R	0.25	0.50	0.010	0.019

<u>Notes</u>

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and idistributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

North America Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European Support

German Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time) Email: ONlit–german@hibbertco.com

French Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time) Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time) Email: ONlit@hibbertco.com ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support Phone: 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong 800–4422–3781 Email: ONlit–asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549 Phone: 81–3–5487–8345 Email: r14153@onsemi.com

Fax Response Line: 303–675–2167 800–344–3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.